Zoledronic Acid

4 mg/5 mL, Concentrate Solution for Infusion

Qualitative and quantitative composition
One vial with 5 mL concentrate contains 4 mg zoledronic acid (anhydrous), corresponding to 4.264 mg zoledronic acid monohydrate.

Pharmaceutical form
Concentrate for solution for infusion.

Clinical particulars

Indications
- Prevention of skeletal-related events (pathological fracture, spinal cord compression, radiation to bone or surgery to bone) in patients with advanced malignancies involving bone.
- Treatment of tumour-induced hypercalcaemia.

Dosage and administration
Zoledronic Acid must not be mixed with calcium or other divalent cation-containing infusion solutions, such as Lactated Ringer’s solution, and should be administered as a single intravenous solution in a line separate from all other medicines.

Prevention of skeletal related events in patients with advanced malignancies involving bone
In adults and elderly patients the recommended dose in the prevention of skeletal related events in patients with advanced malignancies involving bone is 4 mg zoledronic acid. The concentrate must be further diluted with 100 mL 0.9% w/v sodium chloride or 5% w/v glucose solution, and given as an intravenous infusion lasting no less than 15 minutes every 3 to 4 weeks.

Patients should also be administered an oral calcium supplement of 500 mg and 400 IU vitamin D daily.

Treatment of tumour-induced hypercalcaemia (TIH)
In adults and elderly patients the recommended dose in hypercalcaemia (albumin-corrected serum calcium ≥12.0 mg/dL or 3.0 mmol/L) is 4 mg zoledronic acid. The concentrate must be further diluted with 100 mL 0.9% w/v sodium chloride or 5% w/v glucose solution, given as a single intravenous infusion of no less than 15 minutes. Patients must be maintained well hydrated prior to and following administration of zoledronic acid.

Treatment of patients with renal impairment

Treatment of patients with tumour-induced hypercalcaemia (TIH)
Zoledronic acid treatment in adult patients with tumour-induced hypercalcaemia (TIH) and who have severe renal impairment should be considered only after evaluating the risks and benefit of treatment. In the clinical studies, patients with serum creatinine >400 micromol/L or >4.5 mg/dL were excluded.

No dose adjustment is necessary in TIH patients with serum creatinine <400 micromol/L or <4.5 mg/dL (see Warnings and precautions).
Patients with advanced malignancy involving bone and other patients

When initiating treatment with zoledronic acid in adult patients with multiple myeloma or metastatic bone lesions from solid tumours, serum creatinine levels and creatinine clearance (CLcr) should be determined. CLcr is calculated from serum creatinine levels using the Cockcroft-Gault formula. Zoledronic acid is not recommended for patients presenting with severe renal impairment prior to initiation of therapy, which is defined for this population as CLcr <30 mL/min. In clinical trials with zoledronic acid, patients with serum creatinine >265 micromol/L or >3.0 mg/dL were excluded.

In patients with bone metastases presenting with mild to moderate renal impairment prior to initiation of therapy, which is defined for this population as CLcr 30 to 60 mL/min, the following zoledronic acid dose is recommended (see also Warnings and precautions):

<table>
<thead>
<tr>
<th>Baseline Creatinine Clearance (mL/min)</th>
<th>Zoledronic acid Recommended Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>>60</td>
<td>4.0 mg</td>
</tr>
<tr>
<td>50 - 60</td>
<td>3.5 mg*</td>
</tr>
<tr>
<td>40 - 49</td>
<td>3.3 mg*</td>
</tr>
<tr>
<td>30 - 39</td>
<td>3.0 mg*</td>
</tr>
</tbody>
</table>

*Doses have been calculated assuming target AUC of 0.66 (mg•hr/L) (CLcr=75mL/min). The reduced doses for patients with renal impairment are expected to achieve the same AUC as that seen in patients with creatinine clearance of 75 mL/min.

Following initiation of therapy, serum creatinine should be measured prior to each dose of zoledronic acid and treatment should be withheld if renal function has deteriorated. In the clinical trials, renal deterioration was defined as follows:

- For patients with normal baseline serum creatinine (<1.4 mg/dL), an increase of ≥0.5 mg/dL;
- For patients with an abnormal baseline creatinine (>1.4 mg/dL), an increase (of ≥1.0 mg/dL).

In the clinical studies, zoledronic acid treatment was resumed only when the creatinine level returned to within 10% of the baseline value (see Warnings and precautions). Zoledronic acid should be resumed at the same dose as that prior to treatment interruption.

Method of administration
Zoledronic acid must only be administered to patients by healthcare professionals experienced in the administration of intravenous bisphosphonates.

Zoledronic acid must not be mixed with calcium or other divalent cation-containing infusion solutions, such as Lactated Ringer’s solution, and should be administered as a single intravenous solution in a line separate from all other medicines in no less than 15 minutes.

Patients must be maintained in a well hydrated state prior to and following administration of zoledronic acid.

Preparation of reduced zoledronic acid doses
In patients with mild to moderate renal impairment, which is defined as CLcr 30 to 60 mL/min, reduced zoledronic acid dosages are recommended, except in patients with TIH (see Dosage and administration).

To prepare reduced doses of zoledronic acid 4 mg/5 mL concentrate withdraw an appropriate volume of the liquid concentrate needed, as follows:
4.4 mL for 3.5 mg dose
4.1 mL for 3.3 mg dose
3.8 mL for 3.0 mg dose

The withdrawn amount of liquid concentrate must be further diluted in 100 mL of sterile 0.9% w/v sodium chloride solution or 5% w/v glucose solution. The dose must be given as a single intravenous infusion of no less than 15 minutes.

Contraindications

- Zoledronic acid concentrate is contraindicated in pregnancy and breast-feeding women.
- Hypersensitivity to zoledronic acid or other bisphosphonates or any of the excipients in the formulation of zoledronic acid.

Warnings and precautions

General

All patients, including paediatric patients and patients with mild to moderate renal impairment, must be assessed prior to administration of zoledronic acid to assure that they are adequately hydrated.

Overhydration should be avoided in patients at risk of cardiac failure.

Standard hypercalcaemia-related metabolic parameters, such as albumin-corrected serum levels of calcium, phosphate and magnesium as well as serum creatinine should be carefully monitored after initiating zoledronic acid therapy. If hypocalcaemia, hypophosphataemia, or hypomagnesaemia occur, short-term supplemental therapy may be necessary. Untreated hypercalcaemia patients generally have some degree of renal function impairment, therefore careful renal function monitoring should be considered.

Zoledronic Acid contains the same active ingredient as found in Zometa®/ Aclasta® (zoledronic acid). Patients being treated with Zoledronic Acid should not be treated with Zometa®/Aclasta® or other products containing zoledronic acid concomitantly. Zoledronic Acid should also not be given together with other bisphosphonates since the combined effects of these agents are unknown.

The safety and efficacy of zoledronic acid in paediatric patients have not been established.

While not observed in clinical trials with zoledronic acid, there have been reports of bronchoconstriction in acetylsalicylic acid sensitive asthmatic patients receiving bisphosphonates.

Renal impairment

Adult patients with TIH and evidence of deterioration in renal function should be appropriately evaluated with consideration given as to whether the potential benefit of continued treatment with zoledronic acid outweighs the possible risk (see Dosage and Administration).

The decision to treat patients with bone metastases for the prevention of skeletal related events should consider that the onset of treatment effect is 2 to 3 months.

Bisphosphonates have been associated with reports of renal dysfunction. Factors that may increase the potential for deterioration in renal function include dehydration, pre-existing...
renal impairment, multiple cycles of zoledronic acid or other bisphosphonates as well as use of nephrotoxic medicines or using a shorter infusion time than currently recommended. While the risk is reduced with a dose of zoledronic acid 4 mg administered over no less than 15 minutes, deterioration in renal function may still occur. Renal deterioration, progression to renal failure and dialysis have been reported in patients after the initial dose or a single dose of zoledronic acid. Increases in serum creatinine also occur in some patients with chronic administration of zoledronic acid at recommended doses for prevention of skeletal related events, although less frequently.

Serum creatinine levels should be measured before each zoledronic acid dose. In patients with bone metastases with mild to moderate renal impairment at initiation of zoledronic acid treatment, lower doses are recommended in all patients except patients with TIH. In patients who show evidence of renal deterioration during treatment, zoledronic acid should only be resumed when creatinine level returns to within 10% of baseline value (see Dosage and administration).

The use of zoledronic acid is not recommended in patients with severe renal impairment because there are limited clinical safety and pharmacokinetic data in this population, and there is a risk of renal function deterioration in patients treated with bisphosphonates, including zoledronic acid. In clinical trials, patients with severe renal impairment were defined as those with baseline serum creatinine ≥400 micromol/L or ≥4.5 mg/dL for patients with TIH and ≥265 micromol/L or ≥3.0 mg/dL for patients with cancer and bone metastases respectively. In pharmacokinetic studies, patients with severe renal impairment were defined as those with baseline creatinine clearance <30 mL/min (see Pharmacokinetics and Dosage and Administration).

The safety of zoledronic acid in paediatric patients with renal impairment has not been established.

Hepatic insufficiency

As only limited clinical data are available in patients with severe hepatic insufficiency, no specific recommendations can be given for this patient population.

Osteonecrosis of the jaw

Osteonecrosis of the jaw (ONJ) has been reported predominantly in adult cancer patients treated with bisphosphonates, including zoledronic acid. Many of these patients were also receiving chemotherapy and corticosteroids. Many had signs of local infection including osteomyelitis.

Post-marketing experience and the literature suggest a greater frequency of reports of ONJ based on tumour type (advanced breast cancer, multiple myeloma), and dental status (dental extraction, periodontal disease, local trauma including poorly fitting dentures).

Patients should maintain good oral hygiene and should have a dental examination with preventive dentistry prior to treatment with bisphosphonates.

While on treatment with bisphosphonates, patients should avoid invasive dental procedures if possible. For patients who develop osteonecrosis of the jaw while on bisphosphonate therapy, dental surgery may exacerbate the condition. For patients requiring dental procedures, there are no data available to suggest whether discontinuation of bisphosphonate treatment reduces the risk of osteonecrosis of the jaw. Clinical judgment of the treating physician should guide the management plan of each patient based on individual benefit/risk assessment.

Atypical fractures of the femur

Atypical subtrochanteric and diaphyseal femoral fractures have been reported in patients
receiving bisphosphonate therapy, primarily in patients receiving long-term treatment for osteoporosis. These transverse or short oblique fractures can occur anywhere along the femur from just below the lesser trochanter to just above the supracondylar flare. These fractures occur after minimal or no trauma and some patients experience thigh or groin pain, often associated with imaging features of stress fractures, weeks to months before presenting with a completed femoral fracture. Fractures are often bilateral; therefore the contralateral femur should be examined in zoledronic acid-treated patients, who have sustained a femoral shaft fracture. Poor healing of these fractures has also been reported. Discontinuation of zoledronic acid therapy in patients suspected to have an atypical femur fracture should be considered pending evaluation of the patient, based on an individual benefit risk assessment. Reports of atypical femoral fracture have been received in patients treated with zoledronic acid; however causality with zoledronic acid therapy has not been established.

During zoledronic acid treatment patients should be advised to report any thigh, hip or groin pain and any patient presenting with such symptoms should be evaluated for an incomplete femur fracture.

Musculoskeletal pain
In post-marketing experience, severe and occasionally incapacitating bone, joint, and/or muscle pain have been reported in patients taking bisphosphonates, including zoledronic acid (see Adverse Effects). The time to onset of symptoms varied from one day to several months after starting treatment. Most patients had relief of symptoms after stopping treatment. A subset had recurrence of symptoms when re-challenged with the same medicine or another bisphosphonate.

Zoledronic Acid contains the same active ingredient as found in Aclasta®/Zometa® (zoledronic acid). Patients being treated with Zoledronic Acid should not be treated with Aclasta®/Zometa® or other products containing zoledronic acid concomitantly.

Hypocalcaemia
Hypocalcaemia has been reported in patients treated with zoledronic acid. Cardiac arrhythmias and neurologic adverse events (seizures, tetany, and numbness) have been reported secondary to cases of severe hypocalcaemia. In some instances, the hypocalcaemia may be life-threatening. Caution is advised when zoledronic acid is administered with other hypocalcaemia causing medicines, as they may have synergistic effect resulting in severe hypocalcaemia (see Interactions with Other Medicines). Serum calcium should be measured and hypocalcaemia must be corrected before initiating zoledronic acid therapy. Patients should be adequately supplemented with calcium and vitamin D.

Interactions

Anticipated interactions to be considered
Caution is advised when bisphosphonates like zoledronic acid are administered with aminoglycosides or calcitonin or loop diuretics, since these agents may have an additive effect, resulting in a lower serum calcium level for longer periods than required (see Warnings and precautions).

Caution is indicated when zoledronic acid is used with other potentially nephrotoxic medicines.

Observed interactions to be considered
Caution is advised when zoledronic acid is administered with anti-angiogenic medicines as an increase in incidence of ONJ has been observed in patients treated concomitantly with
these medicines.

Absence of interactions
In clinical studies, zoledronic acid has been administered concomitantly with commonly used anticancer agents, diuretics (except for loop diuretics, see Anticipated interactions to be considered), antibiotics and analgesics without clinically apparent interactions occurring.

No dose adjustment for zoledronic acid is needed when co-administered with thalidomide, except in patients with mild to moderate renal impairment at baseline (see Dosage and administration). Co-administration of thalidomide (100 mg once daily) with zoledronic acid (4 mg given as a 15 minute infusion) did not significantly change the pharmacokinetics of zoledronic acid and the creatinine clearance of patients with multiple myeloma.

Women of child-bearing potential, pregnancy, and breast-feeding

Women of child-bearing potential
Women of child-bearing potential should be advised to avoid becoming pregnant and advised of the potential hazard to the fetus while receiving zoledronic acid. There may be a risk of fetal harm (e.g. skeletal and other abnormalities) if a woman becomes pregnant while receiving bisphosphonate therapy. The impact of variables such as time between cessation of bisphosphonate therapy to conception, the particular bisphosphonate used, and the route of administration on this risk has not been established.

Pregnancy
In animal reproduction studies zoledronic acid was administered subcutaneously to rats and rabbits. It was found to be teratogenic at doses ≥ 0.2 mg/kg bodyweight in rats. In rabbits, there was no teratogenicity or foeto-toxicity but maternotoxicity was found. Zoledronic acid should not be used during pregnancy (see Contraindications).

Breast-feeding
It is not known whether zoledronic acid is excreted into human milk. Zoledronic acid should not be used by breast-feeding women (see Contraindications).

Effects on ability to drive and use machines
No studies on the effects on the ability to drive and use machines have been performed.

Adverse effects

Summary of the safety profile
The most serious adverse medicine reactions reported in patients receiving zoledronic acid in the approved indications are: anaphylactic reaction, ocular adverse events, osteonecrosis of the jaw, atypical femoral fracture, atrial fibrillation, renal function impairment, acute phase reaction, and hypocalcaemia. The frequencies of these adverse reactions are shown in Table 1 or shown as adverse reactions from ‘Spontaneous reports and literature cases’ with “not known” frequency.

 Frequencies of adverse reactions for zoledronic acid 4 mg are mainly based on data collected from chronic treatment. Adverse reactions to zoledronic acid are usually mild and transient and similar to those reported for other bisphosphonates. Those reactions can be expected to occur in approximately one third of patients treated with zoledronic acid. Intravenous administration has been most commonly associated with a flu-like illness including bone pain, arthritis with subsequent joint swelling, fever, fatigue and rigors. Cases of arthralgia and myalgia have commonly been reported.
Very commonly, the reduction in renal calcium excretion is accompanied by a fall in serum phosphate levels, which is asymptomatic not requiring treatment. Commonly, the serum calcium may fall to asymptomatic hypocalcaemic levels.

Gastrointestinal reactions, such as nausea and vomiting have been reported following intravenous infusion of zoledronic acid. Uncommonly local reactions at the infusion site such as redness or swelling and/or pain were also observed.

Anorexia was commonly reported in patients treated with zoledronic acid 4 mg.

Rash or pruritus has been uncommonly observed.

As with other bisphosphonates, cases of conjunctivitis have been commonly reported.

Reports of impaired renal function in clinical trials in postmenopausal women with early breast cancer treated with aromatase inhibitors were 0.2%. Based on pooled analysis of placebo controlled studies, severe anaemia (Hb < 8.0 g/dL) was reported in 5.2% of patients receiving zoledronic acid 4 mg versus 4.2% on placebo.

Based on pooled analysis of placebo controlled studies, severe anaemia (Hb < 8.0 g/dL) was commonly reported in patients receiving zoledronic acid 4 mg.

Adverse medicine reactions from clinical studies (Table 1) are listed by MedDRA system organ class. Within each system organ class, the adverse medicine reactions are ranked under headings of frequency, the most frequent first. Within each frequency grouping, adverse medicine reactions are presented in order of decreasing seriousness. In addition, the corresponding frequency category for each adverse medicine reaction is based on the following convention (CIOMS): Very common (≥1/10), common (≥1/100, < 1/10), uncommon (≥1/1,000, <1/100), rare (≥1/10,000, <1/1,000), very rare (<1/10,000).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Adverse medicine reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td></td>
</tr>
<tr>
<td>Common:</td>
<td>Anaemia.</td>
</tr>
<tr>
<td>Uncommon:</td>
<td>Thrombocytopenia, leukopenia.</td>
</tr>
<tr>
<td>Rare:</td>
<td>Pancytopenia.</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
</tr>
<tr>
<td>Common:</td>
<td>Headache, paraesthesia.</td>
</tr>
<tr>
<td>Uncommon:</td>
<td>Dizziness, dysgeusia, hypoaesthesia, hyperaesthesia, tremor.</td>
</tr>
<tr>
<td>Very rare:</td>
<td>Convulsion, hypoaesthesia and tetany (secondary to hypocalcaemia)</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td></td>
</tr>
<tr>
<td>Common:</td>
<td>Sleep disorder</td>
</tr>
<tr>
<td>Uncommon:</td>
<td>Anxiety.</td>
</tr>
<tr>
<td>Rare:</td>
<td>Confusional state</td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
</tr>
<tr>
<td>Common:</td>
<td>Conjunctivitis.</td>
</tr>
<tr>
<td>Uncommon:</td>
<td>Blurred Vision.</td>
</tr>
<tr>
<td>Rare:</td>
<td>Uveitis, episcleritis.</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
</tr>
<tr>
<td>Common:</td>
<td>Nausea, vomiting, decreased appetite, constipation.</td>
</tr>
<tr>
<td>Uncommon:</td>
<td>Diarrhoea, abdominal pain, dyspepsia, stomatitis, dry mouth.</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td></td>
</tr>
<tr>
<td>Uncommon:</td>
<td>Dyspnoea, cough</td>
</tr>
<tr>
<td>Rare:</td>
<td>Interstitial lung disease (ILD)</td>
</tr>
</tbody>
</table>
Skin and subcutaneous tissue disorders
Common: Hyperhidrosis
Uncommon: Pruritus, rash (including erythematous and macular rash).

Musculoskeletal, connective tissue and bone disorders
Common: Bone pain, myalgia, arthralgia, generalised pain, joint stiffness.
Uncommon: Osteonecrosis of jaw (ONJ), muscle spasms

Cardiac disorders
Rare: Bradycardia, cardiac arrhythmia (secondary to hypocalcaemia).

Vascular disorders
Common: Hypertension
Uncommon: Hypotension

Renal and urinary disorders
Common: Renal impairment.
Uncommon: Acute renal failure, haematuria, proteinuria.

Immune system disorders
Uncommon: Hypersensitivity reaction.
Rare: Angioedema.

General disorders and administration site conditions
Common: Acute phase reaction, fever, flu-like syndrome (including: fatigue, rigors, malaise and flushing), peripheral oedema, asthenia
Uncommon: Injection site reactions (including: pain, irritation, swelling, induration, redness), chest pain, weight increased
Rare: Arthritis and joint swelling as a symptom of Acute phase reaction.

Investigations
Very common: Hypophosphataemia.
Common: Blood creatinine and blood urea increased, hypocalcaemia.
Uncommon: Hypomagnesaemia, hypokalaemia.
Rare: Hyperkalaemia, hypernatraemia.

Adverse medicine reactions from spontaneous reports and literature cases (frequency not known)

The following adverse reactions have been reported during post-marketing experience with zoledronic acid via spontaneous case reports and literature cases. Because these reactions are reported voluntarily from a population of uncertain size and are subject to confounding factors, it is not possible to reliably estimate their frequency (which is therefore categorized as not known) or establish a causal relationship to medicine exposure.

Immune system disorders: anaphylactic reaction/shock
Nervous system disorders: somnolence
Eye disorders: episcleritis, scleritis and orbital inflammation
Cardiac disorders: atrial fibrillation
Vascular disorders: hypotension leading to syncope or circulatory collapse, primarily in patients with underlying risk factors
Respiratory, thoracic and mediastinal disorders: bronchospasms
Skin and subcutaneous tissue disorders: urticaria
Musculoskeletal and connective tissue disorders: severe and occasionally incapacitating bone, joint, and/or muscle pain, atypical subtrochanteric and diaphyseal femoral fractures (bisphosphonate class adverse reaction, including zoledronic acid).

Description of selected adverse reactions

Renal function impairment
Zoledronic acid has been associated with reports of renal function impairment. In a pooled analysis of safety data from Zometa registration trials for the prevention of skeletal-related events in patients with advanced malignancy involving bone, the frequency of renal function impairment adverse events suspected to be related to zoledronic acid (adverse reactions) was as follows: multiple myeloma (3.2%), prostate cancer (3.1%), breast cancer (4.3%), lung and other solid tumours (3.2%). Factors that may increase the potential for deterioration in renal function include dehydration, pre-existing renal impairment, multiple cycles of zoledronic acid or other bisphosphonates, as well as concomitant use of nephrotoxic medicinal products or using a shorter infusion time than currently recommended. Renal deterioration, progression to renal failure and dialysis have been reported in patients after the initial dose or a single dose of zoledronic acid (see Warnings and precautions).

Osteonecrosis of the jaw
Cases of osteonecrosis (primarily of the jaws) have been reported predominantly in cancer patients treated with bisphosphonates, including zoledronic acid (uncommon). Many of these patients had signs of local infection including osteomyelitis, and the majority of the reports refer to cancer patients following tooth extractions or other dental surgeries. Osteonecrosis of the jaws has multiple well documented risk factors including a diagnosis of cancer, concomitant therapies (e.g. chemotherapy, radiotherapy, corticosteroids) and co-morbid conditions (e.g. anaemia, coagulopathies, infection, pre-existing oral disease). Although causality has not been determined, it is prudent to avoid dental surgery as recovery may be prolonged (see Warnings and precautions). Data suggests a greater frequency of reports of ONJ based on tumour type (advanced breast cancer, multiple myeloma).

Acute phase reaction
This adverse medicine reaction consists of a constellation of symptoms that includes pyrexia, fatigue, bone pain, chills, influenza-like illness, arthritis with subsequent joint swelling. The onset time is ≤ 3 days post-zoledronic acid infusion, and the reaction is also referred to using the terms “flu-like” or “post-dose” symptoms; these symptoms usually resolve within a few days.

Atrial fibrillation
In one 3 year, randomised, double-blind controlled trial that evaluated the efficacy and safety of zoledronic acid 5 mg once yearly vs placebo in the treatment of postmenopausal osteoporosis (PMO), the overall incidence of atrial fibrillation was 2.5% (96 out of 3,862) and 1.9% (75 out of 3,852) in patients receiving zoledronic acid 5 mg and placebo, respectively. The rate of atrial fibrillation serious adverse events was 1.3% (51 out of 3,862) and 0.6% (22 out of 3,852) in patients receiving zoledronic acid 5 mg and placebo, respectively. The imbalance observed in this trial has not been observed in other trials with zoledronic acid, including those with zoledronic acid 4 mg every 3 to 4 weeks in oncology patients. The mechanism behind the increased incidence of atrial fibrillation in this single clinical trial is unknown.

Overdosage
Clinical experience with acute overdosage of zoledronic acid is limited. Patients who have received doses higher than those recommended should be carefully monitored, since renal function impairment (including renal failure) and serum electrolyte (including calcium, phosphorus and magnesium) abnormalities have been observed. In the event of
hypocalcaemia, calcium gluconate infusions should be administered as clinically indicated.

The National Poisons Centre (telephone 0800 POISON or 0800 764 766) should be contacted for advice on management.

Clinical Pharmacology

Pharmacodynamic properties (PD)
Pharmacotherapeutic group: Bisphosphonate, ATC code: M05 BA08

Zoledronic acid is a highly potent medicine that belongs to the bisphosphonate class of medicines, which act primarily on bone. It is one of the most potent inhibitors of osteoclastic bone resorption known to date.

The selective action of bisphosphonates on bone is based on their high affinity for mineralised bone, but the precise molecular mechanism leading to the inhibition of osteoclastic activity is still unclear. In long-term animal studies, zoledronic acid inhibits bone resorption without adversely affecting the formation, mineralization or mechanical properties of bone.

In addition to being a very potent inhibitor of bone resorption, zoledronic acid also possesses several anti-tumour properties that could contribute to its overall efficacy in the treatment of metastatic bone disease. The following properties have been demonstrated in preclinical studies:

- **In vivo**: Inhibition of osteoclastic bone resorption, which alters the bone marrow microenvironment making it less conducive to tumour cell growth, anti-angiogenic activity, anti-pain activity.
- **In vitro**: Inhibition of osteoblast proliferation, direct cytostatic and pro-apoptotic activity on tumour cells, synergistic cytostatic effect with other anti-cancer medicines, anti-adhesion/invasion activity.

Pharmacokinetic properties (PK)

Single and multiple 5- and 15-minute infusions of 2, 4, 8 and 16 mg zoledronic acid in 64 patients with bone metastases yielded the following pharmacokinetic data, which were found to be dose independent.

After initiating the infusion of zoledronic acid, the plasma concentrations of medicine rapidly increased, achieving their peak at the end of the infusion period, followed by a rapid decline to <10% of peak after 4 hours and <1% of peak after 24 hours, with a subsequent prolonged period of very low concentrations not exceeding 0.1% of peak prior to the second infusion of medicine on day 28.

Intravenously administered zoledronic acid is eliminated via a triphasic process: rapid biphasic disappearance from the systemic circulation, with half-lives of t½alpha 0.24 and t½beta 1.87 hours, followed by a long elimination phase with a terminal elimination half-life of t½gamma 146 hours. There was no accumulation of medicine in plasma after multiple doses of the medicine given every 28 days. Zoledronic acid is not metabolised and is excreted unchanged via the kidney. Over the first 24 hours, 39 ± 16% of the administered dose is recovered in the urine, while the remainder is principally bound to bone tissue. From the bone tissue it is released very slowly back into the systemic circulation and eliminated via the kidney. The total body clearance is 5.04 ± 2.5 L/h, independent of dose, and unaffected by gender, age, race, and body weight. Increasing the infusion time from 5 to 15 minutes caused a 30% decrease in zoledronic acid concentration at the end of the infusion, but had no effect on the area under the plasma concentration versus time curve.
No pharmacokinetic data for zoledronic acid are available in patients with hypercalcaemia or in patients with hepatic insufficiency. Zoledronic acid does not inhibit human P450 enzymes in vitro, shows no biotransformation and in animal studies <3% of the administered dose was recovered in the faeces, suggesting no relevant role of liver function in the pharmacokinetics of zoledronic acid.

The renal clearance of zoledronic acid was significantly positively correlated with creatinine clearance, renal clearance representing 75 ±33% of the creatinine clearance, which showed a mean of 84 ± 29 mL/min (range 22 to 143 mL/min) in the 64 cancer patients studied. Population analysis showed that for a patient with creatinine clearance of 20 mL/min (severe renal impairment), or 50 mL/min (moderate impairment), the corresponding predicted clearance of zoledronic acid would be 37% or 72%, respectively, of that of a patient showing creatinine clearance of 84 mL/min. Only limited pharmacokinetic data are available in patients with severe renal insufficiency (creatinine clearance <30 mL/min). The use of zoledronic acid is not recommended in patients with severe renal impairment (See Warnings and precautions).

Zoledronic acid shows no affinity for the cellular components of blood and plasma protein binding is low (approximately 56%) and independent of the concentration of zoledronic acid.

The three pharmacokinetic studies conducted in cancer patients with bones metastases reveal no effect by gender, race, age (range 38 to 84 years), and body weight on zoledronic acid total clearance.

Clinical Studies

Clinical trial results in the prevention of skeletal related events in patients with advanced malignancies involving bone

Zoledronic acid was compared to placebo for the prevention of skeletal related events (SREs) in adult prostate cancer patients with 214 men receiving zoledronic acid 4 mg versus 208 receiving placebo. After the initial 15 months of treatment, 186 patients continued for up to an additional 9 months, giving a total duration of double-blind therapy up to 24 months. Zoledronic acid 4 mg demonstrated a significant advantage over placebo for the proportion of patients experiencing at least one skeletal related event (SRE) (38% for zoledronic acid 4 mg versus 49 % for placebo, p=0.028), delayed the median time to first SRE (488 days for zoledronic acid 4 mg versus 321 days for placebo, p=0.009), and reduced the annual incidence of event per patient - skeletal morbidity rate (0.77 for zoledronic acid 4 mg versus 1.47 for placebo, p=0.005). Multiple event analysis showed 36% risk reduction in developing skeletal related events in the zoledronic acid group compared with placebo (p=0.002). Pain was measured at baseline and periodically throughout the trial. Patients receiving zoledronic acid reported less increase in pain than those receiving placebo, and the differences reached significance at months 3, 9, 21 and 24. Fewer zoledronic acid patients suffered pathological fractures. The treatment effects were less pronounced in patients with blastic lesions. Efficacy results are provided in Table 2.

In a second study, zoledronic acid reduced the number of SREs and extended the median time to an SRE by over two months in the population of adult patients who had other solid tumours involving bone, which had a median survival of only six months (134 patients with non-small cell lung cancer [NSCLC]. 123 with other solid tumours treated with zoledronic acid vs 130 patients with NSCLC, 120 with other solid tumours treated with placebo). After initial 9 months of treatment, 101 patients entered the 12 month extension study, and 26 completed the full 21 months. Zoledronic acid 4 mg reduced the proportion of patients with SREs (39% for zoledronic acid 4 mg versus 48% for placebo, p=0.039), delayed the median time to first SRE (236 days for zoledronic acid 4 mg versus 155 days for placebo, p=0.009), and reduced the annual incidence of events per patient - skeletal morbidity rate (1.74 for
Zoledronic acid 4 mg versus 2.71 for placebo, p=0.012). Multiple event analysis showed 30.7% risk reduction in developing skeletal related events in the zoledronic acid group compared with placebo (p=0.003). The treatment effect in non-small cell lung cancer patients appeared to be smaller than in patients with other solid tumours. Efficacy results are provided in Table 3.

Table 2: Efficacy results (prostate cancer patients receiving hormonal therapy)

<table>
<thead>
<tr>
<th></th>
<th>Any SRE (+TfH)</th>
<th>Fractures*</th>
<th>Radiation therapy to bone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zoledronic acid 4 mg</td>
<td>Placebo</td>
<td>Zoledronic acid 4 mg</td>
</tr>
<tr>
<td>N</td>
<td>214</td>
<td>208</td>
<td>214</td>
</tr>
<tr>
<td>Proportion of patients with SREs (%)</td>
<td>38</td>
<td>49</td>
<td>17</td>
</tr>
<tr>
<td>p-value</td>
<td>0.028</td>
<td>0.052</td>
<td>0.119</td>
</tr>
<tr>
<td>Median time to SRE (days)</td>
<td>488</td>
<td>321</td>
<td>NR</td>
</tr>
<tr>
<td>p-value</td>
<td>0.009</td>
<td>0.020</td>
<td>0.055</td>
</tr>
<tr>
<td>Skeletal morbidity rate</td>
<td>0.77</td>
<td>1.47</td>
<td>0.20</td>
</tr>
<tr>
<td>p-value</td>
<td>0.005</td>
<td>0.023</td>
<td>0.060</td>
</tr>
<tr>
<td>Risk reduction of suffering from multiple events** (%)</td>
<td>36</td>
<td>-</td>
<td>NA</td>
</tr>
<tr>
<td>p-value</td>
<td>0.002</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

* Includes vertebral and non-vertebral fractures
** Accounts for all skeletal events; the total number as well as time to each event during the trial.

Table 3: Efficacy results (solid tumours other than breast or prostate cancer)

<table>
<thead>
<tr>
<th></th>
<th>Any SRE (+TfH)</th>
<th>Fractures*</th>
<th>Radiation therapy to bone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zoledronic acid 4 mg</td>
<td>Placebo</td>
<td>Zoledronic acid 4 mg</td>
</tr>
<tr>
<td>N</td>
<td>257</td>
<td>250</td>
<td>257</td>
</tr>
<tr>
<td>Proportion of patients with SREs (%)</td>
<td>39</td>
<td>48</td>
<td>16</td>
</tr>
<tr>
<td>p-value</td>
<td>0.039</td>
<td>0.064</td>
<td>0.173</td>
</tr>
<tr>
<td>Median time to SRE (days)</td>
<td>236</td>
<td>155</td>
<td>NR</td>
</tr>
<tr>
<td>p-value</td>
<td>0.008</td>
<td>0.020</td>
<td>0.079</td>
</tr>
<tr>
<td>Skeletal morbidity rate</td>
<td>1.74</td>
<td>2.71</td>
<td>0.39</td>
</tr>
<tr>
<td>p-value</td>
<td>0.012</td>
<td>0.066</td>
<td>0.099</td>
</tr>
<tr>
<td>Risk reduction of suffering from multiple events** (%)</td>
<td>30.7</td>
<td>-</td>
<td>NA</td>
</tr>
<tr>
<td>p-value</td>
<td>0.003</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

* Includes vertebral and non-vertebral fractures
** Accounts for all skeletal events; the total number as well as time to each event during the trial.

In a third phase III randomised, double-blind trial comparing zoledronic acid 4 mg to pamidronate 90 mg, 1,122 adult patients (564 zoledronic acid 4 mg, 558 pamidronate 90 mg) with multiple myeloma or breast cancer with at least one bone lesion were treated with 4 mg zoledronic acid or 90 mg pamidronate every 3 to 4 weeks. Eight patients were excluded from the efficacy analysis because of good clinical practice non-compliance. 606 patients entered the 12-month, double-blind extension phase. Total therapy lasted up to 24 months.

The results demonstrated that zoledronic acid 4 mg showed comparable efficacy to 90 mg pamidronate in the prevention of skeletal related events. The multiple event analyses
revealed a significant risk reduction of 16% (p=0.030) in patients treated with zoledronic acid 4 mg. Efficacy results are provided in Table 4.

| Table 4: Efficacy results (breast cancer and multiple myeloma patients) |
|---------------------------|-----------------|-----------------|-----------------|
| | Any SRE (+THI) | Fractures* | Radiation therapy to bone |
| | Zoledronic acid 4 mg | Pam 90 mg | Zoledronic acid 4 mg | Pam 90 mg | Zoledronic acid 4 mg | Pam 90 mg |
| N | 561 | 555 | 561 | 555 | 561 | 555 |
| Proportion of patients with SREs (%) | 0.196 | 0.653 | 0.196 | 0.653 | 0.196 | 0.653 |
| Median time to SRE (days) | 376 | 356 | NR | 714 | NR | NR |
| Risk reduction of suffering from multiple events** (%) | 16 | - | NA | NA | NA | NA |

* Includes vertebral and non-vertebral fractures.
** Accounts for all skeletal events, the total number as well as time to each event during the trial.

In clinical trials performed in adult patients with bone metastases or osteolytic lesions, the overall safety profile amongst all treatment groups (zoledronic acid 4 mg, and pamidronate 90 mg and placebo) was similar in types and severity.

Zoledronic acid was also studied in a double-blind, randomized, placebo-controlled trial in 228 adult patients with documented bone metastases from breast cancer to evaluate the effect of zoledronic acid on the skeletal related event (SRE) rate ratio, calculated as the total number of SRE events (excluding hypercalcaemia and adjusted for prior fracture), divided by the total risk period. Patients received either 4 mg zoledronic acid or placebo every four weeks for one year. Patients were evenly distributed between zoledronic acid-treated and placebo groups.

The SRE rate ratio at one year was 0.61, indicating that treatment with zoledronic acid reduced the rate of occurrence of SREs by 39% compared with placebo (p=0.027). The proportion of patients with at least one SRE (excluding hypercalcaemia) was 29.8% in the zoledronic acid-treated group versus 49.6% in the placebo group (p=0.003). Median time to onset of the first SRE was not reached in the zoledronic acid-treated arm at the end of the study and was significantly prolonged compared to placebo (p=0.007). Zoledronic acid reduced the risk of SREs by 41% in a multiple event analysis (risk ratio=0.59, p=0.019) compared with placebo.

In the zoledronic acid-treated group, decreases in pain scores from baseline (using the Brief Pain Inventory, BPI) occurred from 4 weeks onwards and at every subsequent time point during the study, while the pain score in the placebo group remained unchanged or increased from baseline (Figure 1). Zoledronic acid inhibited the worsening of the analgesic score more than placebo. In addition, 71.8% of zoledronic acid-treated patients versus 63.1% of placebo patients showed improvement or no change in the ECOG performance score at the final observation.

Figure 1:
Mean change from baseline in Brief Pain Inventory (BPI) pain scores by treatment group and time on study.
Clinical trial results in the treatment of TIH

Clinical studies in tumour-induced hypercalcaemia (TIH) demonstrated that the effect of zoledronic acid is characterised by decreases in serum calcium and urinary calcium excretion. To assess the effects of zoledronic acid versus pamidronate 90 mg, the results of two pivotal multicentre studies in adult patients with TIH were combined in a pre-planned analysis. The results showed that zoledronic acid 4 mg and 8 mg were statistically superior to pamidronate 90 mg for the proportion of complete responders at day 7 and day 10. There was faster normalisation of corrected serum calcium at day 4 for zoledronic acid 8 mg and at day 7 for zoledronic acid 4 mg and 8 mg. The following response rates were observed Table 5:

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>Day 4</th>
<th>Day 7</th>
<th>Day 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoledronic acid 4 mg (N=86)</td>
<td>45.3% (p=0.104)</td>
<td>82.6% (p=0.005)*</td>
<td>88.4% (p=0.002)*</td>
</tr>
<tr>
<td>Zoledronic acid 8 mg (N=90)</td>
<td>55.6% (p=0.021)*</td>
<td>83.3% (p=0.010)*</td>
<td>86.7% (p=0.015)*</td>
</tr>
<tr>
<td>Pamidronate 90 mg (N=99)</td>
<td>33.3%</td>
<td>63.6%</td>
<td>69.7%</td>
</tr>
</tbody>
</table>

*p-values denote statistical superiority over pamidronate.

Median time to normocalcaemia was 4 days. By day 10 the response rate was 87 to 88% for the zoledronic acid treatment groups versus 70% for pamidronate 90 mg. Median time to relapse (reincrease of albumin-corrected serum calcium ≥ 2.9 mmol/L) was 30 to 40 days for patients treated with zoledronic acid versus 17 days for those treated with pamidronate 90 mg. The results showed that both zoledronic acid doses were statistically superior to pamidronate 90 mg for time to relapse. There were no statistically significant differences between the two zoledronic acid doses.

In clinical trials performed in adult patients with tumour-induced hypercalcaemia (TIH), the overall safety profile amongst all three treatment groups (zoledronic acid 4 and 8 mg and pamidronate 90 mg) was similar in types and severity.

Non-clinical safety data
Acute toxicity
The highest non-lethal single intravenous dose was 10 mg/kg bodyweight in mice and 0.6 mg/kg in rats.

Subchronic and chronic toxicity
Zoledronic acid was well tolerated when administered subcutaneously to rats and intravenously to dogs at doses up to 0.02 mg/kg daily for 4 weeks. Administration of 0.001 mg/kg/day subcutaneously in rats and 0.005 mg/kg/day intravenously in dogs for up to 52 weeks was also well tolerated.

Reproduction toxicity
Zoledronic acid was teratogenic in the rat at subcutaneous doses ≥0.2 mg/kg. Although no teratogenicity or foetotoxicity was observed in the rabbit, maternal toxicity was found.

Mutagenicity and carcinogenic potential
Zoledronic acid was not mutagenic in the mutagenicity tests performed and carcinogenicity testing did not provide any evidence of carcinogenic potential.

Local tolerance
Local tolerance testing in rabbits showed that intravenous administration was well tolerated.

Pharmaceutical Particulars

List of excipients
Mannitol, sodium citrate, water for injections.

Incompatibilities
Studies with glass bottles, as well as several types of infusion bags and infusion lines made from polyvinylchloride, polyethylene and polypropylene (pre-filled with 0.9% w/v sodium chloride solution or 5% w/v glucose solution), showed no incompatibility with zoledronic acid.

To avoid potential incompatibilities, zoledronic acid concentrate is to be diluted with 0.9% w/v sodium chloride solution or 5% w/v glucose solution.

Zoledronic acid concentrate must not be mixed or come into contact with calcium or other divalent cation-containing infusion solutions, such as Lactated Ringer’s solution, and should be administered as a single intravenous solution in a line separate from all other medicines.

Shelf life
Zoledronic Acid concentrate solution for infusion has a shelf life of 3 years.

The zoledronic acid solution (and the stock solution for paediatric use) is stable for 24 hours at 2 to 8°C after further dilution in 100 mL physiological saline or 5% w/v glucose solution. After aseptic reconstitution and dilution, it is preferable to use the reconstituted and diluted product immediately. If not used immediately, the reconstituted solution should be stored at 2 to 8°C. The duration and conditions of storage prior to use are under the healthcare provider’s responsibility. The total time between reconstitution, dilution, storage in a refrigerator at 2 to 8°C and end of administration must not exceed 24 hours. Do not freeze.

Special precautions for storage
Store Zoledronic Acid concentrate solution for infusion at or below 30°C. Zoledronic Acid
must be kept out of the reach and sight of children.

Nature and contents of the container
Zoledronic Acid concentrate solution for infusion is supplied as packs containing 1 vial.
Vial: 5 mL colourless plastic vial container with rubber stopper and flip-off cap.

Instructions for use and handling
Zoledronic Acid concentrate solution for infusion is for intravenous use only.

The 4 mg/5 mL concentrate from one vial or the volume of the concentrate withdrawn as required must be further diluted with 100 mL of calcium-free infusion solution (0.9% w/v sodium chloride solution or 5% w/v glucose solution). If refrigerated, the solution must be allowed to reach room temperature before administration (See also Dosage and administration).

Any unused solution should be discarded. Only clear solution free from particles and discoloration should be used.

Medicine classification
Prescription Medicine

Name and address
Max Health Ltd, P O Box 65 231, Mairangi Bay, Auckland 0754
Ph: 09 815 2664.

Date of preparation
18 March 2016