NEW ZEALAND DATA SHEET

ZANTAC® Injection
Ranitidine Hydrochloride
Solution for injection.

Presentations

ZANTAC Injection is presented in 2 mL ampoules each containing 50 mg ranitidine (as the hydrochloride) in 2 mL aqueous solution (25 mg/mL).

Indications

ZANTAC Injection is indicated for the short-term treatment of duodenal ulcer, benign gastric ulcer, post-operative ulcer, reflux oesophagitis, Zollinger-Ellison syndrome, and the following conditions where a reduction of gastric secretion and acid output is desirable: the prophylaxis of upper gastrointestinal haemorrhage from stress ulceration in seriously ill patients, the prophylaxis of recurrent haemorrhage in patients with bleeding peptic ulcers and before general anaesthesia in patients considered to be at risk of acid aspiration (Mendelson's) syndrome, particularly obstetric patients during labour. For appropriate cases ZANTAC Tablets are also available (see ZANTAC Tablet Data Sheet).

Dosage and Administration

Adults:-

ZANTAC Injection may be given as:-

- a slow (over 2 minutes) intravenous injection of 50 mg, diluted to a volume of 20 mL, every 6-8 hours.

- an intermittent intravenous infusion at 25 mg/hour for two hours, repeated at 6-8 hour intervals.

- an intramuscular injection of 50 mg every 6-8 hours.

In the prophylaxis of upper gastrointestinal haemorrhage from stress ulceration in seriously ill patients a priming dose of 50 mg as a slow intravenous injection followed by a continuous intravenous infusion of 0.125-0.250 mg/kg/h may be preferred.

In the prophylaxis of haemorrhage from stress ulceration in seriously ill patients or prophylaxis of recurrent haemorrhage in patients bleeding from peptic ulceration parenteral administration may be continued until oral feeding
commences. Patients considered to be still at risk may then be treated with ZANTAC Tablets 150 mg twice daily.

For prophylaxis of Mendelson's syndrome 50 mg by intramuscular or slow intravenous injection 45 to 60 minutes before induction of general anaesthesia.

Children:

Use in children has not been evaluated.

Patients over 50 years of age (see Pharmacokinetic Properties, Special Patient Populations, Patients over 50 years of age)

Renal Impairment:

Accumulation of ranitidine with resulting elevated plasma concentrations will occur in patients with renal impairment (creatinine clearance less than 50 mL/min). It is recommended in such patients that ZANTAC be administered in doses of 25 mg.

Contraindications

ZANTAC is contraindicated in patients known to have hypersensitivity to any component of the preparation.

Warnings and Precautions

The possibility of malignancy should be excluded before commencement of therapy in patients with gastric ulcer as treatment with ranitidine may mask symptoms of gastric carcinoma.

Ranitidine is excreted via the kidney and so plasma levels of the medicine are increased in patients with renal impairment. The dosage should be adjusted as detailed above under Dosage and Administration, Renal Impairment.

Bradycardia in association with rapid administration of ZANTAC Injection has been reported rarely, usually in patients with factors predisposing to cardiac rhythm disturbances. Recommended rates of administration should not be exceeded.

The use of higher than recommended doses of intravenous H₂- antagonists has been associated with rises in liver enzymes when treatment has been extended beyond five days.

Rare clinical reports suggest that ranitidine may precipitate acute porphyric attacks. Ranitidine should therefore be avoided in patients with a history of acute porphyria.
In patients such as the elderly, persons with chronic lung disease, diabetes or the immunocompromised, there may be an increased risk of developing community acquired pneumonia. A large epidemiological study showed an increased risk of developing community acquired pneumonia in current users of H2- receptor antagonists versus those who had stopped treatment, with an observed adjusted relative risk of 1.63 (95% CI, 1.07-2.48).

Fertility

There are no data on the effects of ranitidine on human fertility. There were no effects on male and female fertility in animal studies.

Pregnancy and lactation

Ranitidine crosses the placenta and is excreted in human breast milk.

Like other medicines it should only be used during pregnancy and breastfeeding if considered essential.

Effects on the ability to drive and operate machinery

None reported.

Adverse Effects

The following have been reported as events in clinical trials or in the routine management of patients treated with ranitidine. The relationship to ranitidine therapy has not been established in many cases.

Blood & Lymphatic

Blood count changes (leucopenia, thrombocytopenia) have occurred in a few patients. These are usually reversible. Rare cases of agranulocytosis or pancytopenia, sometimes with marrow hypoplasia or marrow aplasia have been reported.

Cardiovascular

As with other H2 receptor antagonists, there have been rare reports of bradycardia and A-V Block. Rare cases of vasculitis have been reported.

Eye

There have been a few reports of reversible blurred vision suggestive of a change in accommodation.

Gastrointestinal

Very rare cases of diarrhoea have been reported.

Hepatobiliary tract & Pancreas
Transient and reversible changes in liver function-tests can occur. There have been occasional reports of hepatitis (hepatocellular, hepatocanalicular or mixed) with or without jaundice. These were usually reversible. Acute pancreatitis has been rarely reported.

Musculoskeletal

Musculoskeletal symptoms such as arthralgia and myalgia have been reported rarely.

Neurology/Psychiatry

Headache, sometimes severe and dizziness have been reported in a very small proportion of patients. Rare cases of reversible mental confusion, depression and hallucinations have been reported, predominantly in severely ill and elderly patients. In addition, reversible involuntary movement disorders have been reported rarely.

Non-site specific/Skin

Skin rash has been reported, including rare cases of erythema multiforme. Rare cases of alopecia have been reported.

Hypersensitivity reactions (urticaria, angioneurotic oedema, fever, bronchospasm, hypotension, anaphylactic shock, chest pain) have been seen rarely after a single dose.

Renal

Very rare cases of acute interstitial nephritis have been reported.

Reproductive System and Breast Disorders

Reversible impotence has been reported rarely. There have been a few reports of breast symptoms and breast conditions (such as gynaecomastia and galactorrhoea).

Interactions

Ranitidine has the potential to affect the absorption, metabolism or renal excretion of other medicines. The altered pharmacokinetics may necessitate dosage adjustment of the affected medicine or discontinuation of treatment.

Interactions occur by several mechanisms including:

1) Inhibition of cytochrome P450-linked mixed function oxygenase system:

Ranitidine at usual therapeutic doses does not potentiate the actions of medicines which are inactivated by this enzyme system such as diazepam, lidocaine, phenytoin, propranolol and theophylline.
There have been reports of altered prothrombin time with coumarin anticoagulants (e.g. warfarin). Due to the narrow therapeutic index, close monitoring of increased or decreased prothrombin time is recommended during concurrent treatment with ranitidine.

2) Competition for renal tubular secretion:

Since ranitidine is partially eliminated by the cationic system, it may affect the clearance of other medicines eliminated by this route. High doses of ranitidine (e.g. such as those used in the treatment of Zollinger-Ellison syndrome) may reduce the excretion of procainamide and N-acetylprocainamide resulting in increased plasma levels of these medicines.

3) Alteration of gastric pH:

The bioavailability of certain medicines may be affected. This can result in either an increase in absorption (e.g. triazolam, midazolam, glipizide) or a decrease in absorption (e.g. ketoconazole, atazanavir, delavirdine, gefitinib).

Overdose

Ranitidine is very specific in action and no particular problems are expected following overdosage with the medicine. Symptomatic and supportive therapy should be given as appropriate.

Further Information

Pharmacodynamic properties

ZANTAC is a specific, rapidly acting histamine H₂-antagonist. It inhibits basal and stimulated secretion of gastric acid, reducing both the volume and the acid and pepsin content of the secretion.

Pharmacokinetic properties

Absorption of ranitidine after intramuscular injection is rapid and peak plasma concentrations are usually achieved within 15 minutes of administration.

Ranitidine is not extensively bound to plasma proteins (15%), but exhibits a large volume of distribution ranging from 96 to 142L.

Ranitidine is not extensively metabolised. The fraction of the dose recovered as metabolites is similar after both oral and intravenous dosing; and includes 6% of the dose in urine as the N-oxide, 2% as the S-oxide, 2% as demethylranitidine and 1 to 2% as the furoic acid analogue.

Plasma concentrations decline bi-exponentially, with a terminal half-life of 2-3 hours. The major route of elimination is renal. After intravenous administration of 150 mg ³H-ranitidine, 98% of the dose was recovered, including 5% in faeces and 93% in urine, of which 70% was unchanged parent medicine. After oral administration of 150 mg ³H-ranitidine, 96% of the dose was recovered,
26% in faeces and 70% in urine of which 35% was unchanged parent medicine. Less than 3% of the dose is excreted in bile. Renal clearance is approximately 500 mL/min, which exceeds glomerular filtration indicating net renal tubular secretion.

Special Patient Populations

Patients over 50 years of age

In patients over 50 years of age, half-life is prolonged (3 to 4 hours) and clearance is reduced, consistent with the age-related decline of renal function. However, systemic exposure and accumulation are 50% higher. This difference exceeds the effect of declining renal function, and indicates increased bioavailability in older patients.

Preclinical safety data

Non-clinical data revealed no special hazard for humans based on conventional studies of safety pharmacology, repeated-dose toxicity, genotoxicity, carcinogenic potential and toxicity to reproduction and development.

List of excipients

25 mg/mL: - Disodium Hydrogen Orthophosphate AR.
- Sodium Chloride BP.
- Potassium Dihydrogen Orthophosphate Anhydrous AR.
- Water for Injections.
- Nitrogen.

Pharmaceutical Precautions

Instructions for use/handling

ZANTAC Injection is a clear, colourless to pale yellow liquid.

ZANTAC Injection is compatible with the following intravenous infusion fluids:-

- 0.9% Sodium Chloride BP.
- 5% Dextrose BP.
- 0.18% Sodium Chloride and 4% Dextrose BP.
- 4.2% Sodium Bicarbonate BP.
- Hartmann’s Solution.

Unused admixtures should be discarded 24 hours after preparation.
Although compatibility studies have only been undertaken in polyvinyl chloride infusion bags (in glass for Sodium Bicarbonate BP) and polyvinyl chloride administration sets it is considered that adequate stability would be conferred by the use of a polyethylene infusion bag.

Incompatibilities

See Instructions for use/handling.

Shelf life

Three years when stored below 25°C.

Special precautions for storage

Protect from light.

ZANTAC Injection should not be autoclaved.

25 mg/mL: Store below 25°C.

Package Quantities

ZANTAC Injection: 2 mL ampoules, boxes of five.

Medicines Schedule

Prescription Only Medicine

Sponsor Details

GlaxoSmithKline NZ Limited
Private Bag 106600
Downtown
Auckland
NEW ZEALAND

Telephone: (09) 367 2900
Facsimile: (09) 367 2506

Date of preparation

04 October 2013

Version: 4.0
ZANTAC® is a registered trade mark of the GlaxoSmithKline group of companies