1. Product Name

Entapone, 200 mg, film coated tablet.

2. Qualitative and Quantitative Composition

Each film coated tablet contains 200 mg of entacapone.

For the full list of excipients, see section 6.1.

3. Pharmaceutical Form

Light orange, oval-shaped, biconvex, film coated tablet debossed with “EE200” on one side of the tablet and “M” on the other side.

4. Clinical Particulars

4.1 Therapeutic indications

Entapone is indicated as an adjunct to standard preparations of levodopa/benserazide or levodopa/carbidopa for use in patients with Parkinson's disease and end-of-dose motor fluctuations, who cannot be stabilized on those combinations.

4.2 Dose and method of administration

Entapone should only be used in combination with levodopa/benserazide or levodopa/carbidopa. The prescribing information for these levodopa preparations is applicable to their concomitant use with entacapone.

Dose

One 200 mg tablet is taken with each levodopa/dopa decarboxylase inhibitor dose. The maximum recommended dose is 200 mg ten times daily, i.e. 2,000 mg of entacapone.

Entacapone enhances the effects of levodopa. Hence, to reduce levodopa-related dopaminergic adverse reactions, e.g. dyskinesias, nausea, vomiting and hallucinations, it is often necessary to adjust levodopa dosage within the first days to first weeks after initiating entacapone treatment. The daily dose of levodopa should be reduced by about 10 to 30% by extending the dosing intervals and/or by reducing the amount of levodopa per dose, according to the clinical condition of the patient.

Entacapone increases the bioavailability of levodopa from standard levodopa/benserazide preparations slightly more (5 to 10%) than from standard levodopa/carbidopa preparations. Hence, patients who are taking standard levodopa/benserazide preparations may need a larger reduction of their levodopa dose when entacapone is initiated.
If Entapone treatment is discontinued, it is necessary to adjust the dosing of other antiparkinsonian treatments, especially levodopa, to achieve a sufficient level of control of the parkinsonian symptoms.

Special populations

Elderly

No dosage adjustment of Entapone is required for elderly patients.

Renal impairment

Renal impairment does not affect the pharmacokinetics of entacapone and there is no need for dose adjustment. However, for patients who are receiving dialysis therapy, a longer dosing interval may be considered (see section 5.2).

Hepatic impairment

See section 4.3.

Paediatric

Entapone is not recommended for use in children below age 18 due to lack of data on safety and efficacy.

Method of administration

Entapone is administered orally and simultaneously with each levodopa/carbidopa or levodopa/benserazide dose.

Entapone can be taken with or without food (see section 5.2).

4.3 Contraindications

- Hepatic impairment.
- Patients with pheochromocytoma due to the increased risk of hypertensive crisis.
- A previous history of neuroleptic malignant syndrome (NMS) and/or non-traumatic rhabdomyolysis.
- Concomitant use of entacapone and non-selective monoamine oxidase (MAO-A and MAO-B) inhibitors (e.g. phenelzine, tranylcypromine).
- Concomitant use of a selective MAO-A inhibitor plus a selective MAO-B inhibitor and entacapone (see section 4.5).
- Known hypersensitivity to entacapone or to any of the excipients.

4.4 Special warnings and precautions for use

Rhabdomyolysis secondary to severe dyskinesias or neuroleptic malignant syndrome (NMS) has been observed rarely in patients with Parkinson's disease. Isolated cases of rhabdomyolysis have been reported with entacapone treatment.

NMS, including rhabdomyolysis and hyperthermia, is characterized by motor symptoms (rigidity, myoclonus, tremor), mental status changes (e.g. agitation, confusion, coma), hyperthermia, autonomic dysfunction (tachycardia, labile blood pressure) and elevated serum creatine phosphokinase (CPK). In individual cases, only some of these symptoms and/or findings may be evident.

Isolated cases of NMS have been reported, especially following abrupt reduction or discontinuation of entacapone and other dopaminergic medications. When considered necessary, withdrawal of entacapone and other dopaminergic treatment should proceed slowly, and if signs and/or symptoms occur despite a slow withdrawal of entacapone, an increase in levodopa dosage may be necessary.
Entacapone therapy should be administered with caution to patients with ischaemic heart disease.

Because of its mechanism of action, entacapone may interfere with the metabolism of medicinal products containing a catechol group and potentiate their action. Thus, entacapone should be administered cautiously to patients being treated with medicinal products metabolized by catechol-O-methyl transferase (COMT), e.g. rimiterol, isoprenaline, adrenaline, noradrenaline, dopamine, dobutamine, alpha-methyldopa, and apomorphine (see section 4.5).

Entacapone is always given as an adjunct to levodopa treatment. Hence, the precautions valid for levodopa treatment should also be taken into account for entacapone treatment. Entacapone increases the bioavailability of levodopa from standard levodopa/benserazide preparations 5 to 10% more than from standard levodopa/carbidopa preparations. Consequently, adverse dopaminergic effects may be more frequent when entacapone is added to levodopa/benserazide treatment (see section 4.8). To reduce levodopa-related dopaminergic adverse reactions, it is often necessary to adjust levodopa dosage within the first days to first weeks after initiating entacapone treatment, according to the clinical condition of the patient (see sections 4.2 and 4.8).

Entacapone may aggravate levodopa-induced orthostatic hypotension. Entacapone should be given cautiously to patients who are taking other medicinal products which may cause orthostatic hypotension.

In clinical studies, adverse dopaminergic effects, e.g. dyskinesia, were more common in patients who received entacapone and dopamine agonists (such as bromocriptine), selegiline or amantadine compared to those who received placebo with this combination. The doses of other antiparkinsonian medications may need to be adjusted when entacapone treatment is initiated.

Entacapone used in combination with levodopa has been associated with somnolence and episodes of sudden sleep onset in patients with Parkinson's disease and caution should therefore be exercised when driving or operating machines (see section 4.7).

For patients experiencing diarrhoea, a follow-up of weight is recommended in order to avoid potential excessive weight decrease. Prolonged or persistent diarrhoea suspected to be related to entacapone may be a sign of colitis. In the event of prolonged or persistent diarrhoea, entacapone should be discontinued and appropriate medical therapy and investigations considered.

For patients who experience progressive anorexia, asthenia and weight decrease within a relatively short period of time, a general medical evaluation including liver function should be considered.

Patients should be regularly monitored for the development of impulse control disorders. Patients and caregivers should be made aware that behavioural symptoms of impulse control disorders including pathological gambling, increased libido, hypersexuality, compulsive spending or buying, binge eating and compulsive eating can occur in patients treated with dopamine agonists and/or other dopaminergic treatments such as entacapone in association with levodopa. Review of treatment is recommended if such symptoms develop.

Entacapone tablets contain sucrose. Therefore, patients with rare hereditary problems of fructose intolerance, glucose-galactose malabsorption or sucrase-isomaltase insufficiency should not take this medicine.

4.5 Interaction with other medicines and other forms of interaction

No interaction of entacapone with carbidopa has been observed with the recommended treatment schedule. Pharmacokinetic interaction with benserazide has not been studied.

In single-dose studies in healthy volunteers, no interactions were observed between entacapone and imipramine or between entacapone and moclobemide. Similarly, no interactions between entacapone and selegiline were observed in repeated-dose studies in parkinsonian patients. However, the experience of the clinical use of entacapone with several drugs, including MAO-A
inhibitors, tricyclic antidepressants, noradrenaline reuptake inhibitors such as desipramine, maprotiline and venlafaxine, and medicinal products that are metabolized by COMT (e.g. catechol-structured compounds: rimiterole, isoprenaline, adrenaline, noradrenaline, dopamine, dobutamine, alpha-methyl dopa, apomorphine, and paroxetine) is still limited. Caution should be exercised when these medicinal products are used concomitantly with entacapone (see sections 4.3 and 4.4).

Entacapone may be used with selegiline (a selective MAO-B inhibitor), but the daily dose of selegiline should not exceed 10 mg.

Entacapone may form chelates with iron in the gastrointestinal tract. Entacapone and iron preparations should be taken at least 2 to 3 hours apart (see section 4.8).

Entacapone binds to human albumin binding site II which also binds several other medicinal products, including diazepam and ibuprofen. Clinical interaction studies with diazepam and non-steroidal anti-inflammatory drugs have not been carried out. According to in vitro studies, significant displacement is not anticipated at therapeutic concentrations of the medicinal products.

Due to its affinity to cytochrome P450 2C9 in vitro (see section 5.2), entacapone may potentially interfere with drugs whose metabolism is dependent on this isoenzyme, such as S-warfarin. However, in an interaction study in healthy volunteers, entacapone did not change the plasma levels of S-warfarin, while the AUC for R-warfarin increased on average by 18% [CI 90 11 to 26%]. The INR values increased on average by 13% [CI 90 6 to 19%]. Thus, control of INR is recommended when entacapone treatment is initiated for patients receiving warfarin.

4.6 Fertility, pregnancy and lactation

Pregnancy

No overt teratogenic or primary fetotoxic effects were observed in animal studies in which the exposure levels of entacapone were markedly higher than the therapeutic exposure levels. As there is no experience in pregnant women, entacapone should not be used during pregnancy.

Breast-feeding

In animal studies entacapone was excreted in milk. The safety of entacapone in infants is unknown. Women should not breast-feed during treatment with entacapone.

Fertility

No data available.

4.7 Effects on ability to drive and use machines

Entacapone in association with levodopa may have major influence on the ability to drive and use machines. Patients being treated with entacapone in association with levodopa and presenting with somnolence and/or sudden sleep onset episodes must be instructed to refrain from driving or engaging in activities where impaired alertness may put themselves or others at risk of serious injury or death (e.g. operating machines) until such recurrent episodes have resolved (see section 4.4).

Entacapone may, together with levodopa, cause dizziness and symptomatic orthostatism. Therefore, caution should be exercised when driving or using machines.

4.8 Undesirable effects

Very common adverse effects found in double-blind placebo controlled phase III studies are dyskinesia, nausea, and abnormal urine (see below).

Common adverse effects found in double-blind placebo controlled phase III studies are diarrhoea, Parkinsonism aggravated, dizziness, abdominal pain, insomnia, dry mouth, fatigue, hallucinations,
constipation, dystonia, increased sweating, hyperkinesia, headache, leg cramps, confusion, paranoia, fall, postural hypotension, vertigo and tremor.

Most of the adverse effects caused by entacapone relate to the increased dopaminergic activity and occur most commonly at the beginning of treatment. Reduction of levodopa dosage may decrease the severity and frequency of these effects. The other major class of adverse effects are gastrointestinal symptoms, including e.g. nausea, vomiting, abdominal pains, constipation and diarrhoea. Urine may be discoloured reddish-brown by entacapone, but this is a harmless phenomenon.

Usually adverse effects caused by entacapone are mild to moderate. The most common adverse effects leading to discontinuation of entacapone treatment have been gastrointestinal symptoms (e.g. diarrhoea, 2.5%) and dopaminergic symptoms (e.g. dyskinesias, 1.7%).

Dyskinesias (27%), nausea (11%), diarrhoea (8%), abdominal pain (7%) and dry mouth (4.2%) were reported significantly more often with entacapone than with placebo in clinical studies.

Some of the adverse reactions, such as dyskinesia, nausea, and abdominal pain, may be more common with the higher doses (1,400 to 2,000 mg per day) than with the lower doses of entacapone.

Slight decreases in haemoglobin, erythrocyte count and haematocrit have been reported during entacapone treatment. The underlying mechanism may involve decreased absorption of iron from the gastrointestinal tract. During long-term treatment (6 months) with entacapone a clinically significant decrease in haemoglobin has been observed in 1.5% of patients.

Rare reports of clinically significant increases in liver enzymes have been received.

The following adverse drug reactions, listed below in Table 1, have been accumulated both from clinical studies with entacapone and since the introduction of entacapone into the market.

Table 1

<table>
<thead>
<tr>
<th>Adverse reactions</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychiatric disorders</td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>Insomnia, hallucinations, confusion, nightmares</td>
</tr>
<tr>
<td>Very rare</td>
<td>Agitation</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
</tr>
<tr>
<td>Very common</td>
<td>Dyskinesia</td>
</tr>
<tr>
<td>Common</td>
<td>Parkinsonism aggravated, dizziness, dystonia, hyperkinesia</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
</tr>
<tr>
<td>Common</td>
<td>Ischaemic heart disease events other than myocardial infarction* (e.g. angina pectoris)</td>
</tr>
<tr>
<td>Uncommon</td>
<td>Myocardial infarction*</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
</tr>
<tr>
<td>Very common</td>
<td>Nausea</td>
</tr>
<tr>
<td>Common</td>
<td>Diarrhoea, abdominal pain, dry mouth, constipation, vomiting</td>
</tr>
<tr>
<td>Very rare</td>
<td>Anorexia, colitis</td>
</tr>
</tbody>
</table>
Hepato-biliary disorders
Rare Hepatic function tests abnormal
Not known Hepatitis with mainly cholestatic features

Skin and subcutaneous tissue disorders
Rare Erythematous or maculopapular rash
Very rare Urticaria
Not known Skin, hair, beard and nail discolourations

Renal and urinary disorders
Very common Urine discolouration

General disorders and administration site conditions
Common Fatigue, sweating increased, fall
Very rare Weight decrease

* The incidence rates of myocardial infarction and other ischaemic heart disease events (0.43% and 1.54%, respectively) are derived from an analysis of 13 double-blind studies involving 2082 patients with end-of-dose motor fluctuations receiving entacapone.

Entacapone used in combination with levodopa has been associated with isolated cases of excessive daytime somnolence and sudden sleep onset episodes (see section 4.7).

Isolated cases of neuroleptic malignant syndrome (NMS) have been reported especially following abrupt reduction or discontinuation of entacapone and other dopaminergic medications.

Isolated cases of rhabdomyolysis have been reported.

Impulse control disorders: pathological gambling, increased libido, hypersexuality, compulsive spending or buying, binge eating and compulsive eating can occur in patients treated with dopamine agonists and/or other dopaminergic treatments such as entacapone in association with levodopa (see section 4.4).

Reporting of suspected adverse reactions
Reporting suspected adverse reactions after authorisation of the medicine is important. It allows continued monitoring of the benefit/risk balance of the medicine. Healthcare professionals are asked to report any suspected adverse reactions https://nzphvc.otago.ac.nz/reporting/.

4.9 Overdose
The post-marketing data includes isolated cases of overdose in which the reported highest daily dose of entacapone has been 16,000 mg. The acute symptoms and signs in these cases of overdose included confusion, decreased activity, somnolence, hypotonia, skin discolouration and urticaria.

Management of acute overdosing is symptomatic.

For further advice on management of overdose please contact the National Poisons Information Centre (0800 POISON or 0800 764 766).

5. Pharmacological Properties

5.1 Pharmacodynamic properties
Pharmacotherapeutic group: catechol-O-methyl transferase inhibitor, ATC code: NO4BX02.

Mechanism of action
Entacapone belongs to a new therapeutic class, catechol-O-methyl transferase (COMT) inhibitors. It is a reversible, specific, and mainly peripherally acting COMT inhibitor designed for concomitant administration with levodopa preparations. Entacapone decreases the metabolic loss of levodopa to 3-O-methyl dopamine (3-OMD) by inhibiting the COMT enzyme. This leads to an increase in the bioavailability of levodopa and an increased amount of levodopa available to the brain. Entacapone thus prolongs the clinical response to levodopa.

Entacapone inhibits the COMT enzyme mainly in peripheral tissues. COMT inhibition in red blood cells closely follows the plasma concentrations of entacapone, thus clearly indicating the reversible nature of COMT inhibition.

Clinical efficacy and safety
In two phase III double-blind studies in altogether 376 patients with Parkinson's disease and end-of-dose motor fluctuations, entacapone or placebo was given with each levodopa/dopa decarboxylase inhibitor dose. The results are given in Table 2. In study I, daily ON time (hours) was measured from home diaries and in study II, the proportion of daily ON time was measured.

Table 2:
Daily ON time (Mean ± SD)

<table>
<thead>
<tr>
<th>Study I: Daily ON time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entacapone (n=85)</td>
</tr>
<tr>
<td>Baseline</td>
</tr>
<tr>
<td>Week 8-24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study II: Proportion of daily ON time (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entacapone (n=103)</td>
</tr>
<tr>
<td>Baseline</td>
</tr>
<tr>
<td>Week 8-24</td>
</tr>
</tbody>
</table>

There were corresponding decreases in OFF time.

In study 1 OFF-time was reduced by 24% compared with 0% in the placebo group.

In study 2 OFF-time was reduced by 18% compared with 5% in the placebo group.

5.2 Pharmacokinetic properties
General Characteristics of the Active Substance
Absorption
There are large intra- and interindividual variations in the absorption of entacapone.

The peak concentration (C_{max}) in plasma is usually reached about one hour after a 200 mg entacapone tablet. The drug is subject to extensive first-pass metabolism. The bioavailability of entacapone is about 35% after an oral dose. Food does not affect the absorption of entacapone to any significant extent.

Distribution
After absorption from the gastrointestinal tract, entacapone is rapidly distributed to the peripheral tissues with a distribution volume at steady state of 20 L. Approximately 92% of the dose is
eliminated during beta-phase, with a short elimination half-life of 30 minutes. The total clearance of entacapone is about 800 mL/min.

Entacapone is extensively bound to plasma proteins, mainly to albumin. In human plasma the unbound fraction is about 2.0% in the therapeutic concentration range. At therapeutic concentrations, entacapone does not displace other extensively bound drugs (e.g. warfarin, salicylic acid, phenylbutazone, or diazepam), nor is it displaced to any significant extent by any of these drugs at therapeutic or higher concentrations.

Biotransformation

A small amount of entacapone, the (E)-isomer, is converted to its (Z)-isomer. The (E)-isomer accounts for 95% of the AUC of entacapone. The (Z)-isomer and traces of other metabolites account for the remaining 5%.

Data from in vitro studies using human liver microsomal preparations indicate that entacapone inhibits cytochrome P450 2C9 (IC50 ~ 4 microM). Entacapone showed little or no inhibition of other types of P450 isoenzymes (CYP1A2, CYP2A6, CYP2D6, CYP2E1, CYP3A and CYP2C19) (see section 4.5).

Elimination

The elimination of entacapone occurs mainly by non-renal metabolic routes. It is estimated that 80-90% of the dose is excreted in faeces, although this has not been confirmed in man. Approximately 10-20% is excreted in urine. Only traces of entacapone are found unchanged in urine. The major part (95%) of the product excreted in urine is conjugated with glucuronic acid. Of the metabolites found in urine only about 1% have been formed through oxidation.

Characteristics in Patients

The pharmacokinetic properties of entacapone are similar in both young and elderly adults. The metabolism of the medicinal product is slowed in patients with mild to moderate liver impairment (Child-Pugh Class A and B), which leads to an increased plasma concentration of entacapone both in the absorption and elimination phases (see section 4.3). Renal impairment does not affect the pharmacokinetics of entacapone. However, a longer dosing interval may be considered for patients who are receiving dialysis therapy.

5.3 **Preclinical safety data**

Preclinical data revealed no special hazard for humans based on conventional studies of safety pharmacology, repeated-dose toxicity, genotoxicity, and carcinogenic potential. In repeated-dose toxicity studies, anaemia most likely due to iron chelating properties of entacapone was observed. In studies of reproduction toxicity, decreased foetal weight and a slightly delayed bone development were noticed in rabbits at systemic exposure levels in the therapeutic range.

6. **Pharmaceutical Particulars**

6.1 **List of excipients**

Tablet core: microcrystalline cellulose, mannitol, low-substituted hydroxypropylcellulose, magnesium stearate, hydrogenated vegetable oil.

Film-coating: HPMC 2910/hypromellose 6cP, titanium dioxide, glycerin, magnesium stearate, iron oxide yellow, sucrose, polysorbate 80, iron oxide red.

6.2 **Incompatibilities**

Not applicable.

6.3 **Shelf life**
3 years.

6.4 Special precautions for storage
Store below 25°C.
Entapone tablets must be kept out of the reach and sight of children.

6.5 Nature and contents of container
PVC/PE/PVdC/Al blister pack. Pack sizes of 30 or 100 tablets.
HDPE bottle with PP screw cap. Pack sizes of 30, 100 or 500 tablets.
Not all pack types and sizes may be marketed.

6.6 Special precautions for disposal
No special requirements.

7. Medicines Schedule
Prescription Medicine

8. Sponsor Details
Mylan New Zealand Ltd
PO Box 11183
Ellerslie
AUCKLAND
Telephone 09-579-2792

9. Date of First Approval
2 June 2011

10. Date of Revision of the Text
27 July 2017 Revise to SmPC format