DATA SHEET

ADALAT® 10 / ADALAT® 20

nifedipine

Name of Medicine

Adalat 10 (nifedipine) modified release tablets
Adalat 20 (nifedipine) modified release tablets

Presentation

Each Adalat 10 modified release tablet contains 10 mg nifedipine
Each Adalat 20 modified release tablet contains 20 mg nifedipine

Round to convex modified release tablet and grey-pink coated.

Clinical Particulars

Indications

• Treatment of coronary heart disease

 Chronic stable angina pectoris (angina of effort)

• Treatment of hypertension

Dosage and Method of Administration

Dosage Regimen

As far as possible the treatment must be tailored to the needs of the individual according to the severity of the disease and the patient's response.

Depending on the clinical picture in each case, the basic dose must be introduced gradually. In patients with mild, moderate or severe impaired liver function careful monitoring and a dose reduction may be necessary. The pharmacokinetics of nifedipine has not been investigated in patients with severe hepatic impairment (see Special Warnings and Precautions for Use and Pharmacokinetic Properties).

Adalat 10 is particularly suitable for dose titration. Dose titration is recommended for hypertensives with severe cerebrovascular disease and for patients, who because of low body weight or multiple therapies with other antihypertensive drugs, are likely to have an excessive reaction to nifedipine. In addition, for patients who experience adverse effects in response to the nifedipine treatment, a finer dose adjustment is desirable and should be individually stabilised with Adalat 10.

Unless otherwise prescribed, the following dosage guidelines apply for adults:
In Coronary Heart Disease:
Chronic stable angina pectoris (angina of effort)
One Adalat 10 tablet twice daily
(2 x 10 mg/day)
One Adalat 20 tablet twice daily
(2 x 20 mg/day)
If higher dosages are necessary, the dose can be increased in stages up to maximum 60 mg daily.

In Hypertension:
One Adalat 10 tablet twice daily
(2 x 10 mg/day)
One Adalat 20 tablet twice daily
(2 x 20 mg/day)
If higher dosages are necessary the dose can be increased in stages up to maximum 60 mg daily.

Co-administration with CYP 3A4 inhibitors or CYP 3A4 inducers may result in the recommendation to adapt the nifedipine dose or not to use nifedipine at all (see Interaction with other Medicinal Products and other Forms of Interaction).

Duration of Use
The attending doctor will determine the duration of use.

Because Adalat has a pronounced antiischemic and antihypertensive action, it should be discontinued gradually, particularly when high doses are used.

Method of Administration
Tablets are generally swallowed whole with a little liquid, irrespective of meal times. Simultaneous food intake leads to delayed but not reduced absorption.

Grapefruit juice is to be avoided (see Interaction with other Medicinal Products and other Forms of Interaction).

Do not chew or halve tablet.

The recommended dosage interval for Adalat 10 or Adalat 20 is about 12 hours and should not be less than 4 hours.

Additional Information on Special Populations

Pediatric patients
The safety and efficacy of Adalat in children below 18 years has not been established.

Geriatric patients
The pharmacokinetics of Adalat are altered in the elderly so that lower maintenance doses of Adalat may be required compared to younger patients.

Patients with hepatic impairment
In patients with mild, moderate or severe impaired liver function, careful monitoring and a dose reduction may be necessary. The pharmacokinetics of nifedipine has not been investigated in patients with severe hepatic impairment (see Special Warnings and Precautions for Use and Pharmacokinetic properties).
Patients with renal impairment
Based on pharmacokinetic data, no dosage adjustment is required in patients with renal impairment (see Pharmacokinetic Properties).

Contraindications
Adalat must not be used in cases of known hypersensitivity to nifedipine or to any of the excipients (see Special Warnings and Precautions of Use and List of Excipients).

Adalat must not be used in pregnancy before week 20 and during breastfeeding (see Pregnancy and Lactation).

Adalat must not be used in cases of cardiovascular shock.

Adalat must not be used in combination with rifampicin because efficient plasma levels of nifedipine may not be obtained due to enzyme induction (see Interaction with other Medicinal Products and other Forms of Interaction).

Special Warnings and Precautions for Use
Care must be exercised in patients with very low blood pressure (severe hypotension with systolic pressure less than 90 mmHg), in cases of manifest heart failure and in the case of severe aortic stenosis.

There are no safety and efficacy data from well-controlled studies in pregnant women (see Pregnancy and Lactation).

Animal studies have shown a variety of embryotoxic, placentotoxic and fetotoxic effects when administered during and after the period of organogenesis (see Preclinical Safety Data).

From the clinical evidence available, a specific prenatal risk has not been identified. Although an increase in perinatal asphyxia, caesarean deliveries as well as prematurity and intrauterine growth retardation have been reported. It is unclear whether these reports are due to the underlying hypertension, its treatment or to a specific drug effect.

The available information is inadequate to rule out adverse drug effects on the unborn and newborn child. Therefore any use in pregnancy after week 20 requires a very careful individual risk benefit assessment and should only be considered if all other treatment options are either not indicated or have failed to be efficacious.

Careful monitoring of blood pressure must be exercised, also when administered nifedipine with intravenous magnesium sulfate, owing to the possibility of an excessive fall in blood pressure, which could harm both mother and fetus.

In patients with mild, moderate or severe impaired liver function careful monitoring and a dose reduction may be necessary. The pharmacokinetics of nifedipine has not been investigated in patients with severe hepatic impairment (see Dosage and Method of Administration and Pharmacokinetic properties). Therefore, nifedipine should be used with caution in patients with severe hepatic impairment.
Adalat OROS modified release tablets are not bioequivalent to immediate release nifedipine capsules and tablets and patients should be carefully monitored if it is decided to switch between immediate release and modified release nifedipine or vice versa.

Nifedipine is metabolised via the cytochrome P450 3A4 system. Medicines that are known to either inhibit or to induce this enzyme system may therefore alter the first pass or the clearance of nifedipine (see Interaction with other Medicinal Products and other Forms of Interaction).

Medicines, which are known to moderate inhibitors of the cytochrome P450 3A4 system and therefore may lead to increased plasma concentrations of nifedipine, are, e.g.:
- macrolide antibiotics (e.g., erythromycin),
- anti-HIV protease inhibitors (e.g., ritonavir),
- azole antimycotics (e.g., ketoconazole),
- the antidepressants nefazodone and fluoxetine,
- quinupristin/dalfopristin,
- valproic acid,
- cimetidine.

Upon co-administration with these medicines, the blood pressure should be monitored and, if necessary, a reduction of the nifedipine dose should be considered.

Since this medicinal product contains lactose, patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency or glucose-galactose malabsorption should not take this medicine.

For use in special populations, see Dosage and Method of Administration.

Interaction with other Medicinal Products and other Forms of Interaction

Medicines that affect nifedipine

The blood pressure lowering effect of nifedipine may be potentiated by co-administration of other antihypertensive medicines.

When Adalat is administered simultaneously with β-receptor blockers the patient should be carefully monitored, since fairly severe hypotension can occur. Deterioration of heart failure is also known to develop in isolated cases.

Nifedipine is metabolised via the cytochrome P450 3A4 system, located both in the intestinal mucosa and in the liver. Medicines that are known to either inhibit or to induce this enzyme system may therefore alter the first pass (after oral administration) or the clearance of nifedipine (see Special Warnings and Precautions for Use).

The extent as well as the duration of interactions should be taken into account when administering Adalat together with the following medicines:

Rifampicin

Rifampicin strongly induces the cytochrome P450 3A4 system. With co-administration of rifampicin, the bioavailability of nifedipine is distinctly reduced and
thus its efficacy weakened. The use of nifedipine in combination with rifampicin is therefore contra-indicated (see **Contraindications**).

Upon co-administration of the following weak to moderate inhibitors of the cytochrome P450 3A4 system the blood pressure should be monitored and, if necessary, a reduction in the nifedipine dose considered (see **Dosage and Method of Administration**).

Macrolide Antibiotics (e.g. erythromycin)
No interaction studies have been carried out between Adalat and macrolide antibiotics. Certain macrolide antibiotics are known to inhibit the cytochrome P450 3A4 mediated metabolism of other medicines. Therefore the potential for an increase of nifedipine plasma concentrations with co-administration of both medicines cannot be excluded (see **Special Warnings and Precautions for Use**).

Azithromycin, although structurally related to the class of macrolide antibiotic is void of CYP3A4 inhibition.

Anti-HIV protease inhibitors (e.g. ritonavir)
A clinical study investigating the potential of a drug interaction between Adalat and certain anti-HIV protease inhibitors has not yet been performed. Medicines of this class are known to inhibit the cytochrome 450 3A4 system. In addition, medicines of this class have been shown to inhibit *in vitro* the cytochrome P450 3A4 mediated metabolism of nifedipine. When administered together with Adalat, a substantial increase in plasma concentrations of nifedipine due to an increased absorption and decreased elimination cannot be excluded (see **Special Warnings and Precautions for Use**).

Azole anti-mycotics (e.g. ketoconazole)
A formal interaction study investigating the potential of a drug interaction between Adalat and certain azole anti-mycotics has not yet been performed. Medicines of this class are known to inhibit the cytochrome P450 3A4 system. When administered orally together with Adalat, a substantial increase in systemic bioavailability of nifedipine due to an increased absorption cannot be excluded (see **Special Warnings and Precautions for Use**).

Fluoxetine
A clinical study investigating the potential of a drug interaction between nifedipine and fluoxetine has not yet been performed. Fluoxetine has been shown to inhibit *in vitro* the cytochrome P450 3A4 mediated metabolism of nifedipine. Therefore an increase of nifedipine plasma concentrations upon co-administration of both drugs cannot be excluded (see **Special Warnings and Precautions for Use**).

Nefazodone
A clinical study investigating the potential of a drug interaction between Adalat and nefazodone has not yet been performed. Nefazodone is known to inhibit the cytochrome P450 3A4 mediated metabolism of other medicines. Therefore an increase of nifedipine plasma concentrations upon co-administration of both drugs cannot be excluded (see **Special Warnings and Precautions for Use**).

Quinupristin/Dalfopristin
Simultaneous administration of quinupristin/dalfopristin and nifedipineAdalat may
lead to increased plasma concentrations of nifedipine (see **Special Warnings and Precautions for Use**).

Valproic Acid
No formal studies have been performed to investigate the potential interaction between Adalat and valproic acid. As valproic acid has been shown to increase the plasma concentrations of the structurally similar calcium channel blocker nimodipine due to enzyme inhibition, an increase in nifedipine plasma concentrations and hence an increase in efficacy cannot be excluded (see **Special Warnings and Precautions for Use**).

Cimetidine
Due to its inhibition of cytochrome P450 3A4, cimetidine elevates the plasma concentrations of nifedipine and may potentiate the antihypertensive effect (see **Special Warnings and Precautions for Use**).

Further studies

Cisapride
Simultaneous administration of cisapride and Adalat may lead to increased plasma concentrations of nifedipine.

Cytochrome P450 3A4 system inducing anti-epileptic medicines, such as phenytoin, carbamazepine and phenobarbitone
Phenytoin induces the cytochrome P450 3A4 system. With co-administration of phenytoin, the bioavailability of nifedipine is reduced and its efficacy weakened. When both drugs are concomitantly administered, the clinical response to Adalat should be monitored and, if necessary, an increase of the nifedipine dose considered. If the dose of nifedipine is increased during co-administration of both medicines, a reduction of the nifedipine dose should be considered when the treatment with phenytoin is discontinued.
No formal studies have been performed to investigate the potential interaction between Adalat and carbamazepine or phenobarbitone. As both medicines have been shown to reduce the plasma concentrations of the structurally similar calcium channel blocker nimodipine due to enzyme induction, a decrease in nifedipine plasma concentrations and hence a decrease in efficacy cannot be excluded.

Effects of nifedipine on other medicines

Blood pressure lowering medicines
Adalat may increase the blood pressure lowering effect of concomitant applied antihypertensives, such as:
- diuretics,
- β-blockers,
- ACE-inhibitors,
- angiotensin II receptor-antagonists,
- other calcium antagonists,
- α-adrenergic blocking agents,
- PDE5 inhibitors,
- α-methyldopa.

When Adalat is administered simultaneously with β-receptor blockers the patient should be carefully monitored, since deterioration of heart failure is also known to develop in isolated cases.
Digoxin
The simultaneous administration of Adalat and digoxin may lead to reduced digoxin clearance and hence an increase in plasma concentrations of digoxin. As a precaution therefore the patient should be checked for symptoms of digoxin overdosage and, if necessary, the glycoside dose should be reduced, taking account of the plasma concentration of digoxin.

Quinidine
When nifedipine and quinidine have been administered simultaneously, occasionally lowered quinidine plasma concentrations have been observed in individual cases. Some authors reported increased plasma concentrations of nifedipine upon co-administration of both medicines, while others did not observe an alteration in the pharmacokinetics of nifedipine, therefore the blood pressure should be carefully monitored, if quinidine is added to an existing therapy with nifedipine. If necessary, the dose of nifedipine should be decreased. Also in some cases after the discontinuation of nifedipine a distinct increase in plasma concentrations of quinidine have been noted. For this reason, when nifedipine is either additionally administered or discontinued, monitoring of the quinidine plasma concentration and, if necessary, adjustment of the quinidine dose is recommended.

Tacrolimus
Tacrolimus has been shown to be metabolised via the cytochrome P450 3A4 system. Data recently published indicate that the dose of tacrolimus administered simultaneously with nifedipine may be reduced in individual cases. With co-administration the tacrolimus plasma concentrations should be monitored and, if necessary, a reduction in the tacrolimus dose considered.

Drug-food Interactions

Grapefruit juice
Grapefruit juice inhibits the cytochrome P450 3A4 system. Administration of nifedipine together with grapefruit juice thus results in elevated plasma concentrations and prolonged action of nifedipine due to a decreased first pass metabolism or reduced clearance. As a consequence, the blood pressure lowering effect may be increased. After regular intake of grapefruit juice this effect may last for at least 3 days after the last ingestion of grapefruit juice.

Ingestion of grapefruit / grapefruit juice is therefore to be avoided while taking nifedipine (see Dosage and Method of Administration).

Interactions Shown not to Exist

Ajmaline
Concomitant administration of nifedipine and ajmaline has no effect on the metabolism of ajmaline.

Aspirin
Concomitant administration of nifedipine and aspirin 100 mg has no effect on the pharmacokinetics of nifedipine. Co-administration of nifedipine does not alter the effect of aspirin 100 mg on the platelet aggregation and bleeding time.

Benazepril
Concomitant administration of nifedipine and benazepril has no effect on the pharmacokinetics of nifedipine.
Candesartan Cilexetil
Concomitant administration of nifedipine and candesartan cilexetil has no effect on the pharmacokinetics of either medicine.

Debrisoquine
Concomitant administration of nifedipine and debrisoquine has no effect on the metabolic ratio of debrisoquine.

Doxazosin
Concomitant administration of nifedipine and doxazosin has no effect on the pharmacokinetics of nifedipine.

Irbesartan
Concomitant administration of nifedipine and irbesartan has no effect on the pharmacokinetics of irbesartan.

Omeprazole
Concomitant administration of nifedipine and omeprazole has no clinically relevant effect on the pharmacokinetics of nifedipine.

Orlistat
Concomitant administration of nifedipine and orlistat has no effect on the pharmacokinetics of nifedipine.

Pantoprazole
Concomitant administration of nifedipine and pantoprazole has no effect on the pharmacokinetics of nifedipine.

Ranitidine
Concomitant administration of nifedipine and ranitidine has no effect on the pharmacokinetics of nifedipine.

Rosiglitazone
Concomitant administration of nifedipine and rosiglitazone has no clinically relevant effect on the pharmacokinetics of nifedipine.

Talinolol
Concomitant administration of nifedipine and talinolol has no effect on the pharmacokinetics of nifedipine.

Triamterene Hydrochlorothiazide
Concomitant administration of nifedipine and triamterene hydrochlorothiazide has no effect on the pharmacokinetics of nifedipine.

Other forms of interaction
Nifedipine may cause falsely increased spectrophotometric values of urinary vanillylmandelic acid. However, measurement with HPLC is unaffected.

Pregnancy and Lactation

Pregnancy

Adalat is contraindicated in pregnancy before week 20 (see Contraindications).
There are no adequate and well controlled studies in pregnant women.

Nifedipine has been shown to produce teratogenic findings in rats, mice and rabbits, including digital anomalies, malformation of the extremities, cleft palates, cleft sternum and malformation of the ribs. Digital anomalies and malformation of the extremities are possibly a result of compromised uterine blood flow, but have also been observed in animals treated with nifedipine solely after end of the organogenesis period.

Nifedipine administration was associated with a variety of embryotoxic, placentotoxic and fetotoxic effects, including stunted fetuses (rats, mice, rabbits), small placentas and underdeveloped chorionic villi (monkeys), embryonic and fetal deaths (rats, mice, rabbits) and prolonged pregnancy/decreased neonatal survival (rats; not evaluated in other species). All of the doses associated with the teratogenic, embryotoxic or fetotoxic effects in animals were maternally toxic at several times the recommended maximum dose for humans.

In vitro Fertilisation

In single cases of *in vitro* fertilisation calcium-antagonists like nifedipine have been associated with reversible biochemical changes in the spermatozoa's head section that may result in impaired sperm function. In those men who are repeatedly unsuccessful in fathering a child by *in vitro* fertilisation, and where no other explanation can be found, calcium-antagonists like nifedipine should be considered as possible causes.

Lactation

Nifedipine passes into the breast milk. As there is no experience of possible effects on infants, breastfeeding should first be stopped if nifedipine treatment becomes necessary during the breastfeeding period.

Effect on Ability to Drive and Use Machines

Reactions to the drug, which vary in intensity from individual to individual, can impair the ability to drive or to operate machinery. This applies particularly at the start of the treatment, on changing the medication and in combination with alcohol.

Undesirable Effects

Adverse drug reactions (ADRs) based on placebo-controlled studies with Adalat sorted by CIOMS III categories of frequency (clinical trial data base: nifedipine n = 2661; placebo n = 1486; status: 22 Feb 2006 and the ACTION study: nifedipine n = 3825; placebo n = 3840) are listed below:

ADRs listed under "common" were observed with a frequency below 3% with the exception of oedema (9.9%) and headache (3.9%).

The frequencies of ADRs reported with nifedipine containing products are summarised in Table 1 below. With each frequency grouping, ADRs are presented in order of decreasing seriousness.

The frequencies are defined as:
- **Common** $\geq 1/100$ to $< 1/10$ ($\geq 1\%$ to $< 10\%$)
- **Uncommon** $\geq 1/1000$ to $< 1/100$ ($\geq 0.1\%$ to $< 1\%$)
- **Rare** $\geq 1/10000$ to $< 1/1000$ ($\geq 0.01\%$ to $< 0.1\%$)
Table 1. Adverse Drug Reactions reported based on clinical trial data

<table>
<thead>
<tr>
<th>System Organ Class (MedDRA)</th>
<th>Common (\geq 1%) to <10%</th>
<th>Uncommon (\geq 0.1%) to <1%</th>
<th>Rare (\geq 0.01%) to <0.1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immune system disorders</td>
<td>Allergic reaction</td>
<td>Pruritus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allergic oedema / angioedema (incl. larynx oedema*)</td>
<td>Urticaria</td>
<td>Rash</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>Anxiety reactions</td>
<td>Sleep disorders</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Headache</td>
<td>Vertigo</td>
<td>Par-/Dysaesthesia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Migraine</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dizziness</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tremor</td>
<td></td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Pruritus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urticaria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Anxiety reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sleep disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Oedema</td>
<td>Hypotension</td>
<td>Syncope</td>
</tr>
<tr>
<td></td>
<td>Vasodilatation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic, and mediastinal disorders</td>
<td>Nasal congestion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nosebleed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Constipation</td>
<td>Gastrointestinal and abdominal pain</td>
<td>Gingival hyperplasia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nausea</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dyspepsia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flatulence</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dry mouth</td>
<td></td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
<td>Transient increase in liver enzymes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Erythema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Muscle cramps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Joint swelling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal and urinary disorders</td>
<td>Polyuria</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dysuria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reproductive system and breast disorders</td>
<td>Erectile dysfunction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Feeling unwell</td>
<td></td>
<td>Unspecific pain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chills</td>
</tr>
</tbody>
</table>

* = may result in life-threatening outcome

In dialysis patients with malignant hypertension and hypovolaemia, a distinct fall in blood pressure can occur as a result of vasodilation.
Post marketing adverse effects

The ADRs identified during the ongoing market surveillance and for which a frequency could not be estimated are: agranulocytosis, leukopaenia, anaphylactic/anaphylactoid reaction, hyperglycaemia, hypoaesthesia, somnolence, eye pain, chest pain (angina pectoris), dyspnoea, vomiting, gastrooesophageal sphincter insufficiency, jaundice, toxic epidermal necrolysis, photosensitivity allergic reaction, palpable purpura, arthralgia and myalgia.

Overdose

Symptoms

The following symptoms are observed in cases of severe nifedipine intoxication:

Disturbances of consciousness to the point of coma, a drop in blood pressure, tachycardiac/bradycardiac heart rhythm disturbances, hyperglycaemia, metabolic acidosis, hypoxia, cardiogenic shock with pulmonary oedema.

Management of Overdose

As far as treatment is concerned, elimination of the active substance and the restoration of stable cardiovascular conditions have priority.

After oral ingestion thorough gastric lavage is indicated, if necessary in combination with irrigation of the small intestine.

Particularly in cases of intoxication with slow-release nifedipine formulations such as Adalat, elimination must be as complete as possible, including the small intestine, to prevent the otherwise inevitable subsequent absorption of the active substance.

Haemodialysis serves no purpose, as nifedipine is not dialysable, but plasmapheresis is advisable (high plasma protein binding, relatively low volume of distribution).

Bradycardiac heart rhythm disturbances may be treated symptomatically with β-sympathomimetics, and in life-threatening bradycardiac disturbances of heart rhythm temporary pacemaker therapy can be advisable.

Hypotension as a result of cardiogenic shock and arterial vasodilation can be treated with calcium (10 to 20 mL of a 10 % calcium gluconate solution administered slowly intravenously and repeated if necessary). As a result, the serum calcium can reach the upper normal range to slightly elevated levels. If an insufficient increase in blood pressure is achieved with calcium, vasoconstricting sympathomimetics such as dopamine or noradrenaline are additionally administered. The dosage of these drugs is determined solely by the effect obtained.

Additional liquid or volume must be administered with caution because of the danger of overloading the heart.

Pharmacodynamic Properties

Nifedipine is a calcium antagonist of the 1, 4-dihydropyridine type. Calcium antagonists reduce the transmembranal influx of calcium ions through the slow calcium channel into the cell. Nifedipine acts particularly on the cells of the...
myocardium and the smooth muscle cells of the coronary arteries and the peripheral resistance vessels.

In the heart nifedipine dilates the coronary arteries, especially the large conductance vessels, even in the free wall segment of partially stenosed areas. Further, nifedipine reduces the vascular smooth muscle tone in the coronary arteries and prevents vasospasm. The end result is an increased poststenotic blood flow and an increased oxygen supply. Parallel to this, nifedipine reduces the oxygen requirement by lowering peripheral resistance (afterload). With long-term use nifedipine can also prevent the development of new atherosclerotic lesions in the coronary arteries.

Nifedipine reduces the smooth muscle tone of the arterioles, thus lowering the increased peripheral resistance and consequently the blood pressure. At the beginning of the nifedipine treatment there may be a transient reflex increase in heart rate and thus in the cardiac output. However, this increase is not enough to compensate for the vasodilation. In addition, nifedipine increases sodium and water excretion both in the short-term and long-term use. The blood-pressure-lowering effect of nifedipine is particularly pronounced in hypertensive patients.

In Raynaud's syndrome, nifedipine can prevent or reduce the occurring digital vasospasm.

Pharmacokinetic Properties

Absorption

After oral administration nifedipine is rapidly and almost completely absorbed. The systemic availability of orally administered nifedipine is 45 to 56 % owing to a first pass effect. Maximum plasma and serum concentrations are reached at 1.5 to 4.2 hours with Adalat 10 and Adalat 20. Simultaneous food intake leads to delayed, but not reduced absorption.

Two Adalat 10 tablets were shown to be bioequivalent to one Adalat 20 tablet.

Table 2 shows the peak plasma concentrations (c\text{max}) of Adalat 20 and the corresponding times (t\text{max}).

Table 2. Peak plasma concentrations and the time to reach peak plasma concentrations

<table>
<thead>
<tr>
<th>Dose</th>
<th>c\text{max}(mg/L)</th>
<th>t\text{max}(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20mg</td>
<td>26 - 74</td>
<td>1.6 – 4.2</td>
</tr>
</tbody>
</table>

Distribution

Nifedipine is about 95 % bound to plasma protein (albumin). The distribution half-life after intravenous administration was determined to be 5 to 6 minutes.

Biotransformation

After oral administration nifedipine is metabolised in the gut wall and in the liver, primarily by oxidative processes. These metabolites show no pharmacodynamic activity.
Nifedipine is excreted in the form of its metabolites predominantly via the kidneys and about 5 to 15% via the bile in the faeces. The unchanged substance is recovered only in traces (below 0.1%) in the urine.

Elimination

The terminal elimination half-life is 6 to 11 hours because of delayed absorption. No accumulation of the substance after the usual dose was reported during long-term treatment.

In cases of impaired kidney function, no substantial changes have been detected in comparison with healthy volunteers.

In a study comparing the pharmacokinetics of nifedipine in patients with mild (Child Pugh A) or moderate (Child Pugh B) hepatic impairment with those in patients with normal liver function, oral clearance of nifedipine was reduced by on average 48% (Child Pugh A) and 72% (Child Pugh B). As a result AUC and Cmax of nifedipine increased on average by 93% and 64% (Child Pugh A) and by 253% and 171% (Child Pugh B), respectively, compared to patients with normal hepatic function. The pharmacokinetics of nifedipine has not been investigated in patients with severe hepatic impairment (see **Special Warnings and Precautions of Use**).

Preclinical Safety Data

Preclinical data reveal no special hazard for humans based on conventional studies of single and repeated dose toxicity, genotoxicity and carcinogenic potential.

Acute Toxicity

Acute toxicity has been investigated in various animal species and the individual results are listed in Table 3.

Table 3. Acute toxicity in various animal species

<table>
<thead>
<tr>
<th>Animal</th>
<th>LD₅₀ (mg/kg)</th>
<th>Oral</th>
<th>Intravenous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>494 (421 - 572)*</td>
<td>4.2 (3.8 - 4.6)*</td>
<td></td>
</tr>
<tr>
<td>Rat</td>
<td>1022 (950 - 1087)*</td>
<td>15.5 (13.7 - 17.5)*</td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td>250 - 500</td>
<td>2 - 3</td>
<td></td>
</tr>
<tr>
<td>Cat</td>
<td>~ 100</td>
<td>0.5 - 8</td>
<td></td>
</tr>
<tr>
<td>Dog</td>
<td>> 250</td>
<td>2 - 3</td>
<td></td>
</tr>
</tbody>
</table>

* 95% confidence level

Subacute and Subchronic Toxicity

Daily oral administration to rats (50 mg/kg body weight) and to dogs (100 mg/kg body weight) over periods of 13 and 4 weeks respectively, were tolerated without toxic effects.

After parenteral (intravenous) administration, dogs tolerated up to 0.1 mg/kg body weight/day for 6 days without damage. Daily intravenous administration of 2.5 mg/kg body weight in rats over a period of 3 weeks was also tolerated without signs of damage.
Chronic Toxicity

Dogs tolerated up to 100 mg/kg body weight as a daily oral dose over a period of 1 year without toxic damage. In rats, toxic effects occurred at concentrations above 100 ppm in the feed (about 5 to 7 mg/kg body weight).

Carcinogenicity

A long-term study in rats (2 years) yielded no evidence of a carcinogenic effect of nifedipine.

Reproduction Toxicology

Nifedipine has been shown to produce teratogenic findings in rats, mice and rabbits, including digital anomalies, malformation of the extremities, cleft palates, cleft sternum, and malformation of the ribs. Digital anomalies and malformation of the extremities are possibly a result of compromised uterine blood flow, but have also been observed in animals treated with nifedipine solely after end of the organogenesis period. Nifedipine administration was associated with a variety of embryotoxic, placentotoxic and fetotoxic effects, including stunted fetuses (rats, mice, rabbits), small placentas and underdeveloped chorionic villi (monkeys), embryonic and fetal deaths (rats, mice, rabbits) and prolonged pregnancy/decreased neonatal survival (rats; not evaluated in other species). All of the doses associated with the teratogenic, embryotoxic or fetotoxic effects in animals were maternally toxic and several times the recommended maximum dose for humans (see Pregnancy and Lactation).

Mutagenicity

To assess the mutagenic effects the Ames test, the Dominant-lethal-test, and the Micronucleus-test were performed in the mouse. No evidence of a mutagenic effect of nifedipine could be found.

Pharmaceutical Particulars

List of Excipients

- Hypromellose
- Lactose
- Macrogol 4000
- Magnesium stearate
- Maize starch
- Microcrystalline cellulose
- Polysorbate 80
- Iron oxide red (E 172/C.I.77491)
- Titanium dioxide (E 171/C.I.77891)

Incompatibilities

None
Shelf-life

PP/Alu: 48 months from the date of manufacture, stored below 25°C.

Special Precautions for Storage

None

Instructions for Use/Handling

The active substance nifedipine is highly light-sensitive. Therefore the film-coated tablets must not be broken, as the protection against light due to the pigment film-coating is no longer guaranteed.

The light-sensitive active substance contained in the film-coated tablets is protected from light inside and outside its packaging. Nevertheless, tablets must only be removed from the packaging immediately before use.

Adalat 10 and Adalat 20 must not be used after the expiry date.

Nature and Contents of Container

PP/Alu blister strips of 10 tablets in boxes containing 60 tablets.

Medicine Classification

Prescription Medicine

Name and Address

Bayer New Zealand Limited
3 Argus Place
Hillcrest
North Shore
Auckland 0627

Free Phone: 0800 233 988

Date of Preparation

May 2016

Source: CCDS version 23
Dated: 16 December 2015

® Registered Trademark of Bayer AG, Germany