

NEW ZEALAND DATA SHEET

1. PRODUCT NAME

Posaconazole Devatis

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each modified release tablet contains 100 mg of posaconazole.

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Yellow colored, oblong, biconvex film-coated tablet.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Posaconazole Devatis is indicated for use in the treatment of the following invasive fungal infections in patients 18 years of age or older:

- Invasive aspergillosis in patients with disease that is refractory to, or are intolerant of, amphotericin B, itraconazole or voriconazole.
- Oesophageal candidiasis or candidemia in patients with disease that is refractory to, or who are intolerant of, amphotericin B, fluconazole or itraconazole.
- Fusariosis, zygomycosis, cryptococcosis, chromoblastomycosis, and mycetoma in patients with disease refractory to other therapy, or patients who are intolerant of other therapy.
- Coccidioidomycosis.

Posaconazole Devatis is also indicated for use as:

• Prophylaxis of invasive fungal infections, including both yeasts and moulds, in patients 13 years of age and older who are at high risk of developing these infections, such as patients with prolonged neutropenia or haematopoietic stem cell transplant (HSCT) recipients.

4.2 Dose and Method of Administration

Coadministration of drugs that can decrease the plasma concentrations of posaconazole should generally be avoided unless the benefit outweighs the risk. If such drugs are necessary, patients should be monitored closely for breakthrough fungal infections (see section 4.5).

Non-Interchangeability between Posaconazole Devatis Modified Release Tablets and Posaconazole Oral Suspension

The prescriber should follow the specific dosing instructions for each formulation. The modified release tablet and oral suspension are not to be used interchangeably due to the differences in the dosing of each formulation. Therefore, follow the specific dosage recommendations for each of the formulations.

Dose

Recommended dose for Posaconazole Devatis is shown in Table 1.

DEVATIS LIMITED Property-Strictly confidential

Module 1.3.1 New Zealand Data Sheet

Table 1: Recommended Dose for Posaconazole Devatis According to Indication

Indication	Dose and Duration of therapy				
Prophylaxis of Invasive	Loading dose of 300 mg (three 100 mg modified release tablets) twice				
Fungal Infections	a day on the first day, then 300 mg (three 100 mg modified release				
	tablets) once a day thereafter. Each dose may be taken without regard to				
	food intake. Duration of therapy is based on recovery from neutropenia				
	or immunosuppression. For patients with acute myelogenous leukaemia				
	or myelodysplastic syndromes, prophylaxis with Posaconazole Devatis				
	should start several days before the anticipated onset of neutropenia and				
	continue for 7 days after the neutrophil count rises above 500 cells per				
	mm^3 .				
Refractory Invasive Fungal	Loading dose of 300 mg (three 100 mg modified release tablets) twice				
Infections (IFI)/Patients with	a day on the first day, then 300 mg (three 100 mg modified release				
IFI intolerant to 1st line	tablets) once a day thereafter. Duration of therapy should be based on				
therapy	the severity of the underlying disease, recovery from				
Coccidioidomycosis	immunosuppression, and clinical response.				
Refractory Oesophageal	Loading dose of 300 mg (three 100 mg modified release tablets) twice				
Candidiasis	a day on the first day, then 300 mg (three 100 mg modified release				
	tablets) once a day thereafter. Each dose may be taken without regard to				
	food intake. Duration of therapy should be based on the severity of the				
	underlying disease, recovery from immunosuppression, and clinical				
	response.				

Special Populations

Use in renal impairment: No dose adjustment is required for renal dysfunction and as posaconazole is not significantly renally eliminated, an effect of severe renal insufficiency on the pharmacokinetics of posaconazole is not expected and no dose adjustment is recommended (see section 5.2).

Use in hepatic impairment: There is limited pharmacokinetic data in patients with hepatic insufficiency; therefore, no recommendation for dose adjustment can be made. In the small number of subjects studied who had hepatic insufficiency, there was an increase in half-life with a decrease in hepatic function (see section 5.2).

Use in Paediatrics: Safety and efficacy in adolescents and children below the age of 13 years have not been established.

Use in the Elderly: No dosage adjustment is recommended for elderly patients (see section 5.2).

Method of Administration

Posaconazole Devatis is intended for oral administration only.

Posaconazole Devatis should be swallowed whole, and not be divided, crushed, or chewed. Posaconazole Devatis may be taken without regard to food intake.

4.3 Contraindications

Posaconazole Devatis is contraindicated in patients with known hypersensitivity to posaconazole or to any of the excipients.

Co-administration of posaconazole and ergot alkaloids (ergotamine, dihydroergotamine) is contraindicated as posaconazole may increase the plasma concentration of ergot alkaloids, which may lead to ergotism (see section 4.5).

Coadministration with the HMG-CoA reductase inhibitors that are primarily metabolised through CYP3A4 is contraindicated since increased plasma concentration of these drugs can lead to rhabdomyolysis.

Although not studied *in vitro or in vivo*, co-administration of posaconazole and certain drugs metabolised through the CYP3A4 system: terfenadine, astemizole, cisapride, pimozide, and quinidine may result in increased plasma concentrations of those drugs, leading to potentially serious and/or life threatening adverse events, such as QT prolongation and rare occurrences of torsade de pointes (see section 4.5).

4.4 Special warnings and precautions for use

Hypersensitivity

There is no information regarding cross-sensitivity between posaconazole and other azole antifungal agents. Caution should be used when prescribing posaconazole to patients with hypersensitivity to other azoles.

Hepatic toxicity

In clinical trials, there were infrequent cases of hepatic reactions (e.g. mild to moderate elevations in ALT, AST, alkaline phosphatase, total bilirubin, and/or clinical hepatitis) during treatment with posaconazole. Elevated liver function tests were generally reversible on discontinuation of therapy and in some instances these tests normalized without interruption of therapy and rarely required drug discontinuation. Rarely, more severe hepatic reactions (including cases that have progressed to fatal outcomes) were reported in patients with serious underlying medical conditions (e.g. haematological malignancy) during treatment with posaconazole.

QT prolongation

Some azoles have been associated with prolongation of the QTc interval on the electrocardiogram (ECG). Results from a multiple time-matched ECG analysis in healthy volunteers did not show an increase in the mean QTc interval. Nevertheless, posaconazole should not be administered with medications that are known to prolong the QTc interval and are metabolised through the CYP3A4 system (see sections 4.3, 4.5 and 5.2).

Electrolyte disturbances:

Especially those involving potassium, magnesium or calcium levels, should be monitored and corrected as necessary before and during posaconazole therapy.

Vincristine toxicity

Concomitant administration of azole antifungals, including posaconazole, with vincristine has been associated with neurotoxicity and other serious adverse reactions, including seizures, peripheral neuropathy, syndrome of inappropriate antidiuretic hormone secretion, and paralytic ileus. Reserve azole antifungals, including posaconazole, for patients receiving a vinca alkaloid, including vincristine, who have no alternative antifungal treatment options (see section 4.5).

Venetoclax Toxicity

Concomitant administration of posaconazole with venetoclax (a CYP3A4 substrate) may increase venetoclax toxicities, including the risk of tumor lysis syndrome (TLS) and neutropenia (see section 4.5). Refer to the venetoclax prescribing information for detailed guidance.

Paediatric Use

(See section 5.2). Safety and effectiveness in paediatric patients below the age of 13 years have not been established.

Use in the Elderly

No dosage adjustment is recommended for geriatric patients (see section 5.2).

4.5 Interaction with other medicines and other forms of interaction

The interactions described in the following subsections apply to posaconazole modified release tablets and oral suspension unless otherwise specified.

Effect of Other Drugs on Posaconazole modified release tablets

Posaconazole is metabolised via UDP glucuronidation (phase 2 enzymes) and is a substrate for p-glycoprotein (P-gp) efflux. Therefore, inhibitors or inducers of these clearance pathways may affect posaconazole plasma concentrations.

Rifabutin

Rifabutin (300 mg once a day) decreased the C_{max} (maximum plasma concentration) and AUC (area under the plasma concentration time curve) of posaconazole by 43 % and 49 %, respectively. Concomitant use of posaconazole and rifabutin should be avoided unless the benefit to the patient outweighs the risk.

Phenytoin

Phenytoin (200 mg once a day) decreased the C_{max} and AUC of posaconazole by 41 % and 50 %, respectively. Concomitant use of posaconazole and phenytoin should be avoided unless the benefit to the patient outweighs the risk.

H₂ receptor antagonists, proton pump inhibitors and antacids

No clinically relevant effects were observed when posaconazole modified release tablets are concomitantly used with antacids, H₂-receptor antagonists and proton pump inhibitors. No dosage adjustment of posaconazole modified release tablets is required when posaconazole modified release tablets are concomitantly used with antacids, H₂-receptor antagonists and proton pump inhibitors.

Gastrointestinal Motility Agents

No clinically meaningful effect on the pharmacokinetics of posaconazole was observed when posaconazole modified release tablets were concomitantly administered with metoclopramide. No dosage adjustment of posaconazole modified release tablets is required when given concomitantly with metoclopramide.

Glipizide

Glipizide (10 mg single dose) had no clinically significant effect on posaconazole C_{max} and AUC. No posaconazole dosage adjustments are required.

Ritonavir

Ritonavir (600 mg twice a day) had no clinically significant effect on posaconazole C_{max} and AUC. No posaconazole dosage adjustments are required.

Efavirenz

Efavirenz (400 mg once a day) decreased the C_{max} and AUC of posaconazole by 45% and 50%, respectively. Concomitant use of posaconazole and efavirenz should be avoided unless the benefit to the patient outweighs the risk.

Fosamprenavir

Combining fosamprenavir with posaconazole may lead to decreased posaconazole plasma concentrations. If concomitant administration is required, close monitoring for breakthrough fungal infections is recommended. Repeat dose administration of fosamprenavir (700 mg twice a day for 10 days) decreased the C_{max} and AUC of posaconazole (200 mg once a day on the 1st day, 200 mg twice a day on the 2nd day, then 400 mg twice a day for 8 days) by 21 % and 23 %, respectively.

Effects of Posaconazole modified release tablets on Other Drugs

Posaconazole is not metabolised to a clinically significant extent through the cytochrome P450 system. However, posaconazole is an inhibitor of CYP3A4 and thus the plasma levels of drugs that are metabolised through this enzyme pathway may increase when administered with posaconazole.

Terfenadine, astemizole, cisapride, pimozide, and quinidine

Although not studied *in vitro or in vivo*, co-administration of posaconazole and certain drugs such as terfenadine, astemizole, cisapride, pimozide, and quinidine, metabolised through the CYP3A4 system may result in increased plasma concentrations of these drugs, leading to potentially serious and/or life threatening adverse events (QT prolongation and rare occurrences of torsade de pointes). Therefore, co-administration of these drugs with posaconazole is contraindicated (see section 4.3).

Ergot alkaloids

Although not studied *in vitro or in vivo*, posaconazole may increase the plasma concentration of ergot alkaloids (ergotamine and dihydroergotamine), which may lead to ergotism. Coadministration of posaconazole and ergot alkaloids is contraindicated (see section 4.3).

Vinca alkaloids

Most of the vinca alkaloids (e.g., vincristine and vinblastine) are substrates of CYP3A4. Concomitant administration of azole antifungals, including posaconazole, with vincristine has been associated with serious adverse reactions (see section 4.4). Posaconazole may increase the plasma concentrations of vinca alkaloids which may lead to neurotoxicity and other serious adverse reactions. Therefore, reserve azole antifungals, including posaconazole, for patients receiving a vinca alkaloid, including vincristine, who have no alternative antifungal treatment options.

Cyclosporine

In heart transplant patients on stable doses of cyclosporine, posaconazole 200 mg oral suspension once daily increased cyclosporine concentrations requiring dose reductions. When initiating treatment with posaconazole in patients already receiving cyclosporine, the dose of cyclosporine should be reduced (e.g. to about three quarters of the current dose). Thereafter blood levels of cyclosporine should be monitored carefully during co-administration, and upon discontinuation of posaconazole treatment, and the dose of cyclosporine should be adjusted as necessary.

Tacrolimus

Posaconazole increased C_{max} and AUC of tacrolimus (0.05 mg/kg single dose) by 121 % and 358 %, respectively. When initiating posaconazole treatment in patients already receiving tacrolimus, the dose of tacrolimus should be reduced (e.g. to about one third of the current dose). Thereafter blood levels of tacrolimus should be monitored carefully during co-administration, and upon discontinuation of posaconazole, and the dose of tacrolimus should be adjusted as necessary.

Sirolimus

Repeat dose administration of oral posaconazole (400 mg oral suspension twice daily for 16 days) increased the C_{max} and AUC of sirolimus (2 mg single dose) an average of 6.7-fold and 8.9 fold, respectively, in healthy subjects. When initiating therapy in patients already taking sirolimus, the dose of sirolimus should be reduced (e.g., to about 1/10 of the current dose) with frequent monitoring of sirolimus whole blood trough concentrations. Sirolimus concentrations should be performed upon initiation, during co-administration, and at discontinuation of posaconazole treatment, with sirolimus doses adjusted accordingly.

Rifabutin

Posaconazole increased the C_{max} and AUC of rifabutin by 31 % and 72 %, respectively. Concomitant use of posaconazole and rifabutin should be avoided unless the benefit to the patient outweighs the risk. If the drugs are co-administered, careful monitoring of full blood counts and adverse effects related to increased rifabutin levels (e.g., uveitis) is recommended.

Version: NZ-V03 / October 2025

DEVATIS LIMITED Property-Strictly confidential

Midazolam

Repeat dose administration of oral posaconazole (200 mg oral suspension twice daily for 7 days) increased the C_{max} and AUC of IV midazolam (0.4 mg single dose) an average of 1.3- and 4.6-fold, respectively. Posaconazole 400 mg oral suspension twice daily for 7 days increased the IV midazolam C_{max} and AUC by 1.6- and 6.2-fold, respectively. Both doses of posaconazole increased C_{max} and AUC of oral midazolam (2 mg single oral dose) by 2.2- and 4.5-fold, respectively. In addition, oral posaconazole (200 mg or 400 mg oral suspension) prolonged the mean terminal half-life of midazolam from approximately 3-4 hours to 8-10 hours during co-administration. It is recommended that dose adjustments of benzodiazepines, metabolised by CYP3A4, be considered during co-administration with posaconazole.

Zidovudine (AZT), lamivudine (3TC), indinavir

In HIV infected patients on stable doses of zidovudine (300 mg twice a day or 200 mg every 8 hours), lamivudine (150 mg twice a day), and/or indinavir (800 mg every 8 hours), posaconazole had no clinically significant effect on the C_{max} and AUC of these medicinal products.

HMG-CoA reductase inhibitors primarily metabolised through CYP3A4

Repeat dose administration of oral posaconazole (50, 100, and 200 mg oral suspension once daily for 13 days) increased the C_{max} and AUC of simvastatin (40 mg single dose) an average of 7.4- to 11.4-fold, and 5.7- to 10.6-fold, respectively. Increased HMG-CoA reductase inhibitor concentrations in plasma can be associated with rhabdomyolysis. Co-administration of posaconazole and HMG-CoA reductase inhibitors primarily metabolised through CYP3A4 is contraindicated.

Calcium channel blockers metabolised through CYP3A4

Although not studied *in vitro or in vivo*, frequent monitoring for adverse effects and toxicity related to calcium channel blockers is recommended during co-administration with posaconazole. Dose adjustment of calcium channel blockers may be required.

HIV protease inhibitors

As HIV protease inhibitors are CYP3A4 substrates, it is expected that posaconazole will increase plasma levels of these antiretroviral agents. Repeat dose administration of oral posaconazole (400 mg oral suspension twice daily for 7 days) increased the C_{max} and AUC of atazanavir (300 mg once a day for 7 days) an average of 2.6-fold and 3.7-fold, respectively, in healthy subjects. Repeat dose administration of oral posaconazole (400 mg oral suspension twice daily for 7 days) increased the C_{max} and AUC of atazanavir to a lesser extent when administered as a boosted regimen with ritonavir (300 mg atazanavir plus ritonavir 100 mg once a day for 7 days) with an average of 1.5-fold and 2.5-fold, respectively, in healthy subjects. Frequent monitoring for adverse events and toxicity related to antiretroviral agents that are substrates of CYP3A4 is recommended during co-administration with posaconazole.

Digoxin

Administration of other azoles has been associated with increases in digoxin levels. Therefore, posaconazole may increase plasma concentration of digoxin and digoxin levels need to be monitored when initiating or discontinuing posaconazole treatment.

Venetoclax

Concomitant use of venetoclax (a CYP3A4 substrate) with posaconazole increases venetoclax C_{max} and AUC_{0-INF}, which may increase venetoclax toxicities (see Section 4.4).

4.6 Fertility, pregnancy and lactation

Pregnancy

Category B3. There is insufficient information on the use of posaconazole in pregnant women. Studies in animals have shown reproductive toxicity (see section 5.3). Posaconazole has been shown to cause skeletal

malformations in rats at exposures lower than those obtained at therapeutic doses in humans. In rabbits, posaconazole was embryotoxic at exposures greater than those obtained at therapeutic doses. The potential risk to humans is unknown. Posaconazole must not be used during pregnancy unless the benefit to the mother clearly

Pregnancy categorisation definition

outweighs the potential risk to the foetus.

Category B3: Drugs which have been taken by only a limited number of pregnant women and women of childbearing age, without an increase in the frequency of malformation or other direct or indirect harmful effects on the human foetus having been observed. Studies in animals have shown evidence of an increased occurrence of foetal damage, the significance of which is considered uncertain in humans.

Women of childbearing potential

Women of childbearing potential must always use effective contraceptive measures during treatment with posaconazole.

Breast-feeding

Posaconazole is excreted in milk of lactating rats. The excretion of posaconazole in human breast milk has not been investigated. Posaconazole should not be used by nursing mothers unless the benefit to the mother clearly outweighs the potential risk to the infant.

Fertility

Posaconazole had no effect on fertility of male and female rats.

4.7 Effects on ability to drive and use machines

Since certain adverse reactions (e.g. dizziness, somnolence, etc.) have been reported with posaconazole use, which potentially may affect driving/operating machinery, caution needs to be used.

4.8 Undesirable effects

The safety of posaconazole modified release tablets has been assessed in 230 patients enrolled in the pivotal clinical study. Patients were enrolled in a non-comparative pharmacokinetic and safety trial of posaconazole modified release tablets when given as antifungal prophylaxis. Patients were immunocompromised with underlying conditions including hematological malignancy, neutropenia post-chemotherapy, Graft versus Host Disease (GVHD), and post HSCT. Posaconazole therapy was given for a median duration of 28 days. Twenty patients received 200 mg daily dose and 210 patients received 300 mg daily dose (following BID dosing on Day 1 in each cohort).

The most frequently reported treatment-related adverse reactions ($\geq 5\%$) with posaconazole modified release tablets (300 mg tablets once daily) were nausea and diarrhoea.

The most frequently reported adverse reaction leading to discontinuation of posaconazole modified release tablets 300 mg once daily was nausea.

Treatment-related adverse reactions (TRAEs) reported in posaconazole modified release tablets and oral suspension studies

The most common treatment-related adverse reactions reported in posaconazole modified release tablets and oral suspension studies across the whole population of healthy volunteers and patients are shown in Table 2.

Table 2: Treatment-related adverse reactions reported in posaconazole modified release tablets and oral suspension dosed subjects by body system. Common (>1/100, <1/10)

Blood and lymphatic system disorders	Neutropenia				
Common					
Metabolism and nutrition disorders	Anorexia, electrolyte imbalance, hypokalaemia				
Common					
Nervous system disorders	Dizziness, headache, paraesthesia, somnolence				
Common					
Gastrointestinal disorders	Abdominal pain, diarrhoea, dyspepsia, flatulence, dry				
Common	mouth, nausea, vomiting, constipation				
Hepatobiliary disorders	Elevated liver function tests (including AST, ALT,				
Common	alkaline phosphatase, GGT, bilirubin)				
Skin and subcutaneous tissue disorders	Rash, pruritus				
Common					
General disorders and administration site conditions	Asthenia, fatigue, pyrexia (fever)				
Common					

Clinical Laboratory Values

In (uncontrolled) trials of patients with invasive fungal infections treated with posaconazole oral suspension doses of 800 mg/day, the incidence of clinically significant liver function test abnormalities was; ALT and AST (> 3 X Upper Limit Normal {ULN}) 11 % and 10 %, respectively; total bilirubin (> 1.5 X ULN) 22 %; and alkaline phosphatase (> 3 X ULN) 14 %. In healthy volunteers, elevation of hepatic enzymes did not appear to be associated with higher plasma concentrations of posaconazole. In patients, the majority of abnormal liver function tests results showed minor and transient changes and rarely led to discontinuation of therapy. In the comparative trials of patients infected with HIV (or another indication) treated with posaconazole at

doses up to 400 mg, the incidence of clinically significant liver function test abnormalities was as follows; ALT and AST (> 3 X ULN), 3 % and 6 %, respectively: total bilirubin (> 1.5 X ULN), 3 %; and alkaline phosphatase (> 3 X ULN), 3 %.

Post-marketing Experience

The following post-marketing adverse experience has been reported:

Endocrine Disorders: pseudoaldosteronism

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicine is important. It allows continued monitoring of the benefit/risk balance of the medicine. Healthcare professionals are asked to report any suspected adverse reactions

https://pophealth.my.site.com/carmreportnz/s/

4.9 Overdose

During the clinical trials, some patients received posaconazole oral suspension doses up to 1600 mg/day with no adverse reactions noted that were different from the lower doses. In addition, accidental overdose was noted in one patient who took 1200 mg posaconazole oral suspension twice a day for 3 days. No adverse reactions were noted by the investigator.

In a trial of patients with severe haemodialysis-dependent renal dysfunction (Cl_{cr} < 20 mL/min), posaconazole was not removed by haemodialysis. Thus, haemodialysis is unlikely to be effective in removing posaconazole from the systemic circulation.

Posaconazole is not removed by haemodialysis.

There is no experience with overdosage of posaconazole modified release tablets.

For advice on the management of overdose please contact the National Poisons Centre on 0800 POISON (0800 764766).

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Anti-infective for systemic use, triazole derivative, ATC Code: J02A C04

Posaconazole is a broad spectrum triazole antifungal compound with a molecular formula of $C_{37}H_{42}F_2N_8O_4$ yielding a molecular weight of 700.8.

The chemical structure, which possesses four chiral centres, two R and two S, and chemical name are illustrated below:

SCH 56592 (Posaconazole)

CAS INDEX NAME: D-threo-Pentitol, 2,5-anhydro-1,3,4-trideoxy-2-C-(2,4-difluorophenyl)-4-[[4-[4-[4-[4-[4-[4-[1-[(1S,2S)-1-ethyl-2-hydropropyl]-1,5-dihydro-5-oxo-4H-1,2,4-triazol-4-yl]phenyl]-1-piperazinyl]phenoxy]methyl]-1-(1H-1,2,4-triazol-1-yl) CAS RN 171228-49-2.

 $IUPAC\ NAME:\ 4-4-[4-(4-\{(3R,5R)-5-(2,4-difluorophenyl)-5-(1H-1,2,4-triazol-1-ylmethyl)tetrahydro-3-furanyl]methoxyphenyl)piperazino]phenyl-1-[(1S,2S)-1-ethyl-2-hydroxypropyl]-4,5-dihydro-1H-1,2,4-triazol-5-one.$

Mechanism of action

Posaconazole is a triazole antifungal agent. It is a potent inhibitor of the enzyme lanosterol 14α -demethylase, which catalyses an essential step in ergosterol biosynthesis. Ergosterol depletion, coupled with the accumulation of methylated sterol precursors, is thought to impair membrane integrity and the function of some membrane-associated proteins. This results in the inhibition of cell growth and/or cell death.

Microbiology

Posaconazole has been shown *in vitro* and in clinical infections to be active against the following microorganisms: (see section 4.1): Aspergillus species (Aspergillus fumigatus, A. flavus, A. terreus, A. nidulans, A. niger, A. ustus, A.ochraceus), Candida species (Candida albicans, C. glabrata, C. krusei, C. parapsilosis), Cryptococcus neoformans, Coccidioides immitis, Fonsecaea pedrosoi, Histoplasma capsulatum, Pseudallescheria boydii and species of Alternaria, Exophiala, Fusarium, Ramichloridium, Rhizomucor, Mucor, and Rhizopus.

Posaconazole also exhibits in vitro activity against the following yeasts and moulds: Candida dubliniensis, C. famata, C. guilliermondii, C. lusitaniae, C. kefyr, C. rugosa, C. tropicalis, C. zeylanoides, C. inconspicua, C. lipolytica, C. norvegensis, C. pseudotropicalis, Cryptococcus laurentii, Kluyveromyces marxianus,

Module 1.3.1 New Zealand Data Sheet

Saccharomyces cerevisiae, Yarrowia lipolytica, species of Pichia, and Trichosporon, Aspergillus sydowii, Bjerkandera adusta, Blastomyces dermatitidis, Epidermophyton floccosum, Paracoccidioides brasiliensis, Scedosporium apiospermum, Sporothrix schenckii, Wangiella dermatitidis and species of Absidia, Apophysomyces, Bipolaris, Curvularia, Microsporum, Paecilomyces, Penicillium, and Trichophyton. However, the safety and effectiveness of posaconazole in treating clinical infections due to these micro-organisms have not been established in clinical trials.

Posaconazole exhibits broad-spectrum antifungal activity against some yeasts and moulds not generally responsive to azoles, or resistant to other azoles:

- species of Candida (including C. albicans isolates resistant to fluconazole, voriconazole and itraconazole,
- C. krusei and C. glabrata which are inherently less susceptible to fluconazole,
- C. lusitaniae which is inherently less susceptible to amphotericin B),
- Aspergillus (including isolates resistant to fluconazole, voriconazole, itraconazole and amphotericin B)
- organisms not previously regarded as being susceptible to azoles such as the zygomycetes (e.g. species of *Absidia*, *Mucor*, *Rhizopus* and *Rhizomucor*).

In vitro posaconazole exhibited fungicidal activity against species of:

- Aspergillus,
- dimorphic fungi (Blastomyces dermatitidis, Histoplasma capsulatum, Penicillium marneffei, Coccidioides immitis)
- some species of Candida

In animal infection models posaconazole was active against a wide variety of fungal infections caused by moulds or yeasts. However, there was no consistent correlation between minimum inhibitory concentration and efficacy.

Specimens for fungal culture and other relevant laboratory studies (including histopathology) should be obtained prior to therapy to isolate and identify causative organism(s). Therapy may be instituted before the results of the cultures and other laboratory studies are known. However, once these results become available, antifungal therapy should be adjusted accordingly.

Drug Resistance

C. albicans strains resistant to posaconazole could not be generated in the laboratory; spontaneous laboratory Aspergillus fumigatus mutants exhibiting a decrease in susceptibility to posaconazole arose at a frequency of 1x10-8 to 1x10-9. Clinical isolates of Candida albicans and Aspergillus fumigatus exhibiting significant decreases in posaconazole susceptibility are rare. In those rare instances where decreased susceptibility was noted, there was no clear correlation between decreased susceptibility and clinical failure. Clinical success has been observed in patients infected with organisms resistant to other azoles; consistent with these observations posaconazole was active in vitro against many Aspergillus and Candida strains that developed resistance to other azoles and/or amphotericin B. Breakpoints for posaconazole have not been established for any fungi.

Antifungal drug combinations

When combinations of posaconazole with either amphotericin B or caspofungin were tested *in vitro* and *in vivo* there was little or no antagonism and in some instances there was an additive effect. The clinical significance of these results is unknown.

Clinical efficacy and safety

Summary of Posaconazole Modified Release Tablet studies

DEVATIS LIMITED Property-Strictly confidential

Study 5615 was a non-comparative multi-center study performed to evaluate the pharmacokinetic properties,

safety, and tolerability of posaconazole modified release tablet. Study 5615 was conducted in a similar patient population to that previously studied in the pivotal posaconazole oral suspension clinical program. The pharmacokinetics and safety data from Study 5615 were bridged to the existing data (including efficacy data) with the oral suspension.

Study 5615 enrolled a total of 230 subjects. Part 1 of the study was designed to select a dose for further study in Part 2, after first evaluating pharmacokinetics, safety, and tolerability in the neutropenic patient population at high risk of a fungal infection. Part 2 of the study was designed to evaluate posaconazole modified release tablet in a more diverse patient population, and to confirm the exposure of posaconazole modified release tablet in additional subjects at risk of a fungal infection. Posaconazole modified release tablet was administered without regard to food intake in both Part 1 and Part 2 of the study.

The subject population for Part 1 included subjects with acute myelogenous leukaemia (AML) or myelodysplastic syndrome (MDS) who had recently received chemotherapy and had developed or were anticipated to develop significant neutropenia. Two different dosing groups were evaluated in Part 1: 200 mg BID on Day 1, followed by 200 mg QD thereafter (Part 1A) and 300 mg BID on Day 1, followed by 300 mg QD thereafter (Part 1B).

The subject population in Part 2 included: 1) patients with AML or MDS who had recently received chemotherapy and had developed or were anticipated to develop significant neutropenia, or 2) patients who had undergone a HSCT and were receiving immunosuppressive therapy for prevention or treatment of GVHD. These types of patients had been previously studied in a pivotal controlled trial of posaconazole oral suspension. Based on the pharmacokinetics and safety results of Part 1, all subjects in Part 2 received 300 mg BID on Day 1, followed by 300 mg QD thereafter.

The total subject population had a mean age of 51 years (range = 19-78 years), 93% were White, the major ethnicity was not Hispanic or Latino (84%), and 62% were male. The study treated 110 (48%) subjects with AML (new diagnosis), 20 (9%) subjects with AML (first relapse), 9 (4%) subjects with MDS, and 91 (40%) subjects with HSCT, as the primary diseases at study entry.

Serial PK samples were collected on Day 1 and at steady-state on Day 8 for all Part 1 subjects and a subset of Part 2 subjects. This serial PK analysis demonstrated that 90% of the subjects treated with the 300 mg QD dose attained steady state C_{av} between 500-2500 ng/mL. [C_{av} was the average concentration of posaconazole at steady state, calculated as AUC/dosing interval (24 hours).] Subjects with AML/MDS with neutropenia following chemotherapy or HSCT subjects receiving immunosuppressive therapy to prevent or treat GVHD who received 300 mg QD achieved a mean C_{av} at steady state of 1580 ng/mL. The PK findings from the pivotal study (Study 5615) support a 300-mg daily dose of posaconazole modified release tablet for use in prophylaxis.

5.2 Pharmacokinetic properties

Absorption

Posaconazole oral suspension is absorbed with a median T_{max} of 3 hours (patients) and \sim 5 hours (healthy volunteers). Steady-state plasma concentrations attained at 7 to 10 days following multiple-dose administration.

The pharmacokinetics of posaconazole oral suspension are linear following single and multiple dose administration of up to 800 mg. No further increases in exposure were observed when oral suspension doses above 800 mg daily were administered to patients and healthy volunteers. Dividing the total posaconazole daily dose (800 mg) as 400 mg twice a day results in a 184% higher exposure relative to once-a-day administration in patients.

When given orally in healthy volunteers, posaconazole modified release tablet is absorbed with a median T_{max} of 4 to 5 hours. Steady-state plasma concentrations are attained by Day 6 at the 300 mg dose (QD after BID loading dose at Day 1).

The absolute bioavailability of the oral modified release tablet is approximately 54%.

Relative bioavailability was investigated between the 100 mg modified release tablet under fasted conditions and the 100 mg oral suspension under fed conditions in healthy adults. Under these conditions, plasma exposure to posaconazole for the two treatments was similar. Under fasted conditions, the exposure of posaconazole after single-dose tablet administration was 3.7-fold higher than the oral suspension.

Effect of food on oral absorption in healthy volunteers

The AUC of posaconazole oral suspension is about 2.6 times greater when administered with a nonfat meal or nutritional supplement (14 g fat) and 4 times greater when administered with a high-fat meal (~ 50 g fat) relative to the fasted state. Posaconazole oral suspension should be administered with food or a nutritional supplement (see section 4.2).

Posaconazole modified release tablet 100 mg taken under fasted conditions in healthy volunteers achieved similar exposures to oral suspension 100 mg administered with a high fat meal. Posaconazole modified release tablets do not require administration with food in contrast to posaconazole oral suspension.

Distribution

Posaconazole oral suspension has a large apparent volume of distribution (1774 L) suggesting extensive penetration into the peripheral tissues.

Posaconazole, after administration of the modified release tablet, has a mean apparent volume of distribution of 394 L (42%), ranging between 294-583 L among the studies in healthy volunteers.

Posaconazole is highly protein bound (> 98.0 %), predominantly to serum albumin.

Metabolism

Posaconazole does not have any major circulating metabolites and its concentrations are unlikely to be altered by inhibitors of CYP450 enzymes. Of the circulating metabolites, the majority are glucuronide conjugates of posaconazole with only minor amounts of oxidative (CYP450 mediated) metabolites observed. The excreted metabolites in urine and faeces account for approximately 17 % of the administered radio-labelled dose.

Excretion

Posaconazole oral suspension is slowly eliminated with a mean half-life (t½) of 35 hours (range 20 to 66 hours) and a total body clearance (Cl/F) of 32 L/hr. Steady state is attained following 7 to 10 days of multiple-dose administration.

Posaconazole modified release tablet is eliminated with a mean half-life (t½) ranging between 26 and 31 hours and a mean apparent clearance ranging from 7.5 to 11 L/hr.

Posaconazole is predominantly excreted in the faeces (77 % of the radio-labelled dose) with the major component eliminated as parent drug (66 % of the radio-labelled dose). Renal clearance is a minor elimination pathway, with 14 % of the radio-labelled dose excreted in urine (<0.2 % of the radio-labelled dose is parent drug).

Summary of the mean pharmacokinetic parameters in patients

The general pharmacokinetic findings across the clinical program in both healthy volunteers and patients were consistent, in that posaconazole modified release tablet was slowly absorbed and slowly eliminated with a large volume of distribution. The mean pharmacokinetic parameters in patients and healthy volunteers following administration of posaconazole modified release tablets 300 mg once daily (after BID on Day 1 only) for 8 days are displayed in Table 3.

Table 3: Pharmacokinetics of posaconazole modified release tablets in patients and healthy volunteers

Module 1.3.1 New Zealand Data Sheet

		Mean (%CV)	Mean (%CV)			
Population	Dose	Cmax (ng/mL)	Tmax ^a (hr)	AUC(τ) (ng·hr/mL)		
Healthy Volunteers	300 mg/day (n=12)	2764 (21)	3.98 (3 - 6)	51618 (25)		
Patients	300 mg/day (n=50)	2090 (38)	4 (1.3 - 8.1)	37900 (42)		

The exposure to posaconazole modified release tablet following administration of 300 mg once daily (after BID on Day 1 only) up to steady state was 1.3 times higher in healthy volunteers than in patients, without additional safety findings at the higher concentrations (Table 3).

Pharmacokinetics in Special Populations

Paediatric

Following administration of 800 mg per day of posaconazole oral suspension as a divided dose for treatment of invasive fungal infections, mean trough plasma concentrations from 12 paediatric patients 8 -17 years of age (776 ng/mL) were similar to concentrations from 194 patients 18 - 64 years of age (817 ng/mL). No pharmacokinetic data are available from paediatric patients less than 8 years of age. Similarly, in the prophylaxis studies, the mean steady-state posaconazole average concentration (C_{avg}) was comparable among ten adolescents (13 - 17 years of age) to C_{avg} achieved in adults (\geq 18 years of age).

In a study of 136 neutropenic pediatric patients 11 months - 17 years treated with posaconazole oral suspension, at doses up to 18 mg/kg/day divided TID, approximately 50% met the prespecified target (Day 7 C_{avg} between 500 ng/mL-2500 ng/mL).

In general, exposures tended to be higher in the older patients (7 to <18 years) than in younger patients (2 to <7 years). See Table 4.

Table 4: Distribution of Cave by Dose and Age Group at Day 7 in Study P03579

Dose	Age Group	N	C _{avg} (ng/mL)				
			<200	200 - < 500	500-	2500 -	>3650
					<2500	<3650	
12	2 to <7 years	16	19%	44% (7/16)	31%	6% (1/16)	0
mg/kg/day			(3/16)		(5/16)		
divided	7 to <18 years	14	14% (2/14)	21% (3/14)	65%	0	0
BID					(9/14)		
18	2 to <7 years	12	25% (3/12)	25% (3/12)	50%	0	0
mg/kg/day					(6/12)		
divided	7 to <18 years	12	8% (1/12)	25% (3/12)	50%	8% (1/12)	8% (1/12)
BID	-				(6/12)		
18	2 to <7 years	5	20% (1/5)	20% (1/5)	60% (3/5)	0	0
mg/kg/day	7 to <18 years	10	20% (2/10)	0	80%	0	0
divided	-				(8/10)		
TID							
12	3 months to	1	0	100% (1/1)	0	0	0
mg/kg/day	<2 years						
divided							
TID							

Numbers in parentheses = (Number of subjects in category/Total number of subjects)
Target C_{avg} range (500-<2500 ng/ml) required for ~90% of subjects to meet criteria for study success

There is no paediatric experience with posaconazole modified release tablets.

Gender

DEVATIS LIMITED Property-Strictly confidential Version: NZ-V03 / October 2025

Module 1.3.1 New Zealand Data Sheet

The pharmacokinetics of posaconazole are comparable in men and women. No adjustment in the dosage of Posaconazole Devatis is necessary based on gender.

Elderly

Results from a multiple dose study of posaconazole oral suspension in healthy volunteers (N=48) indicated that at steady state, there was an increase in C_{max} (26 %) and AUC (29 %) observed in elderly subjects (24 subjects \geq 65 years of age) relative to younger subjects (24 subjects 18 - 45 years of age). A similar trend was observed in the clinical program based on a small proportion of elderly subjects \geq 65 years of age (N=25 vs. 194 patients 18 - 64 years of age). However, in a population pharmacokinetic analysis (Study 1899) age did not influence the pharmacokinetics of posaconazole oral suspension. The safety profile of posaconazole oral suspension

Of the 230 patients treated with posaconazole modified release tablets, 38 (17%) were greater than 65 years of age. The pharmacokinetics of posaconazole modified release tablets are comparable in young and elderly subjects. No overall differences in safety were observed between geriatric patients and younger patients; therefore, no dosage adjustment is recommended for elderly subjects.

between the young and elderly patients was similar. Therefore no dose adjustment is required for age.

Race

Results from a multiple dose study in healthy volunteers (n = 56) indicated that there was only a slight decrease (16%) in the AUC and C_{max} of posaconazole oral suspension in Black subjects relative to Caucasian subjects, therefore, no dose adjustment for race is required.

There is insufficient data among different races with posaconazole modified release tablets.

Weight

Pharmacokinetic modeling for posaconazole suggests that patients weighing greater than 120 kg may have lower posaconazole exposure. It is, therefore, suggested to closely monitor for breakthrough fungal infections in patients weighing more than 120 kg.

Renal insufficiency

Following single-dose administration of posaconazole oral suspension, there was no effect of mild and moderate renal insufficiency (n=18, Cl $_{cr} \ge 20$ mL/min/1.73 m²) on posaconazole pharmacokinetics, therefore, no dose adjustment is required. In subjects with severe renal insufficiency (n=6, Cl $_{cr} < 20$ mL/min/1.73 m²), the exposure of posaconazole was highly variable (96 % CV) compared to the exposure in the other renal groups (< 40 % CV). As posaconazole is not significantly renally eliminated, an effect of severe renal insufficiency on the pharmacokinetics of posaconazole is not expected and no dose adjustment is recommended. However, due to the variability in exposure, patients with severe renal impairment should be monitored closely for breakthrough fungal infections. Posaconazole is not removed by haemodialysis.

Similar recommendations apply to posaconazole modified release tablets; however, a specific study has not been conducted with the posaconazole modified release tablets.

Hepatic insufficiency

In a study with small number of subjects (n=12) who had hepatic impairment, there was an increase in exposure associated with prolongation of half-life (26.6, 35.3, and 46.1 hours for the mild, moderate and severe groups, respectively compared to 22.1 hours in subjects with normal hepatic function). An approximately 2-fold increase in steady-state AUC is estimated in patients with severe hepatic impairment. Due to the limited pharmacokinetic data in patients with hepatic impairment, posaconazole should be used with caution in patients with severe hepatic impairment since the prolonged half-life that may occur will lead to increased exposure.

Similar recommendations apply to posaconazole modified release tablets; however, a specific study has not been conducted with the posaconazole modified release tablets.

Electrocardiogram evaluation

Multiple, time-matched ECGs collected over a 12 hour period were recorded at baseline and steady-state from 173 healthy male and female volunteers (18 to 85 years of age) administered posaconazole oral suspension 400 mg BID with a high-fat meal. In this pooled analysis, the mean QT_c (Fridericia) interval change was -5 msec following administration of the recommended clinical dose. A decrease in the QT_c (F) interval (- 3 msec) was also observed in a small number of subjects (n=16) administered placebo. The placebo-adjusted mean maximum QT_c (F) interval change from baseline was < 0 msec (- 8 msec). No healthy subject administered posaconazole had a QT_c (F) interval of ≥ 500 msec or an increase ≥ 60 msec in their QT_c (F) interval from baseline.

Posaconazole should be administered with caution to patients with potentially proarrhythmic conditions. Do not administer with drugs that are known to prolong the QT_c interval and are metabolized through CYP3A4. Rigorous attempts to correct potassium, magnesium, and calcium should be made before starting posaconazole.

5.3 Preclinical safety data

As observed with other azole antifungal agents, effects related to inhibition of steroid hormone synthesis were seen in repeated-dose toxicity studies with posaconazole. Adrenal suppressive effects were observed in toxicity studies in rats and dogs at exposures equal to or greater than those obtained at therapeutic doses in humans.

Reproduction, peri- and postnatal development studies were conducted in rats. At exposures lower than those obtained at therapeutic doses in humans, posaconazole caused skeletal variations and malformations, dystocia, increased length of gestation, reduced mean litter size and postnatal viability. In rabbits, posaconazole was embryotoxic at exposures greater than those obtained at therapeutic doses. As observed with other azole antifungal agents, these effects on reproduction were considered related to a treatment-related effect on steroidogenesis.

Posaconazole was not genotoxic in *in vitro* and *in vivo* studies. Carcinogenicity studies did not reveal special hazards for humans.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Hypromellose acetate succinate Microcrystalline cellulose Croscarmellose sodium Silica, colloidal anhydrous Hydroxypropylcellulose Magnesium stearate Polyvinyl alcohol-Part. hydrolyzed Titanium dioxide Macrogol 4000 Talc Iron oxide yellow

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

30 months.

DEVATIS LIMITED Property-Strictly confidential Version: NZ-V03 / October 2025

Module 1.3.1 New Zealand Data Sheet

6.4 Special precautions for storage

Store below 30°C.

6.5 Nature and contents of container

The finished product is packed in blister packs of opaque PVC/PCTFE/Alu.

Pack sizes: 24, 48 and 96 film-coated tablets

Not all pack sizes may be marketed.

6.6. Special precautions for disposal

Any unused product or waste material should be disposed of in accordance with local requirements.

7. MEDICINE SCHEDULE

Prescription Medicine

8. SPONSOR

DEVATIS LIMITED Findex, 173 Spey Street, Invercargill 9810, New Zealand Toll Free Number: 0800 887750 www.devatis.nz

9. DATE OF FIRST APPROVAL

Date of first authorization: Date of latest renewal:

10. DATE OF REVISION OF THE TEXT

10.2025