LEVOPHED™ 1:1000

Name of medicine
LEVOPHED™ 1:1000

Presentation
LEVOPHED™ 1:1000 is a sterile noradrenaline concentrated solution for injection.

Each ampoule contains noradrenaline 2 mg in 2 mL (1:1000), present as 4 mg of noradrenaline acid tartrate in 2 mL. Each ampoule also contains the excipients sodium metabisulfite 2 mg/mL as an antioxidant, sodium chloride 8 mg/mL for tonicity, and water for injections up to 2 mL. It has a pH of 3.0 to 4.5.

Each vial contains noradrenaline 4 mg in 4 mL (1:1000), present as 8 mg of noradrenaline acid tartrate in 4 mL. Each vial also contains the excipients sodium metabisulfite 0.2 mg/mL as an antioxidant, sodium chloride 8 mg/mL for tonicity, and water for injections up to 4 mL. It has a pH of 3.0 to 4.5.

Uses

Actions
Noradrenaline (sometimes referred to as norepinephrine or L-arterenol/levarterenol), a sympathomimetic amine which differs from adrenaline by the absence of a methyl group on the nitrogen atom.

Noradrenaline functions as a peripheral vasoconstrictor (alpha-adrenergic action) and as an inotropic stimulator of the heart and dilator of coronary arteries (beta-adrenergic action).

These actions result in an increase in systemic blood pressure and coronary artery blood flow. In myocardial infarction accompanied by hypertension, LEVOPHED™ 1:1000 usually increases aortic blood pressure, coronary artery blood flow, and myocardial oxygenation, thereby helping to limit the area of myocardial ischaemia and infarction. Venous return is increased and the heart tends to resume a more normal rate and rhythm than in the hypotensive state. In hypotension that persists after correction of blood volume deficits, LEVOPHED™ 1:1000 helps raise the blood pressure to an optimal level and establish a more adequate circulation.

Pharmacokinetics

Absorption
Orally ingested noradrenaline is destroyed in the GI tract, and the drug is poorly absorbed after subcutaneous injection. After IV administration, a pressor response occurs rapidly. The drug has a short duration of action, and the pressor action stops within 1-2 minutes after the infusion is discontinued.

Distribution
Noradrenaline localises mainly in sympathetic nervous tissue. The drug crosses the placenta but not the blood-brain barrier.

Elimination
The pharmacologic actions of noradrenaline are terminated primarily by uptake and metabolism in sympathetic nerve endings. The drug is metabolised in the liver and other tissues by a combination of reactions involving the enzymes catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO). The major metabolites are normetanephrine and 3-methoxy-4-hydroxy mandelic acid (vanillylmandelic acid, VMA), both of which are inactive. Other inactive metabolites include 3-methoxy-4-hydroxyphenylglycol, 3,4-dihydroxymandelic acid, and 3,4-dihydroxyphenylglycol. Noradrenaline metabolites are excreted in urine primarily as the sulfate conjugates and, to a lesser extent, as the glucuronide conjugates. Only small quantities of noradrenaline are excreted unchanged.

Indications
For the restoration of blood pressure in certain acute hypotensive states (e.g. phaeochromocytomectomy, sympathectomy, poliomyelitis, spinal anaesthesia, myocardial infarction, septicaemia, blood transfusion, and drug reactions).
As an adjunct in the treatment of cardiac arrest. To restore and maintain an adequate blood pressure after an effective heartbeat and ventilation have been established by other means.

Dosage and administration

LEVOPHED™ 1:1000 contains noradrenaline as the acid tartrate. It is a concentrated, potent injection which must be diluted in dextrose containing solutions prior to infusion. An infusion of noradrenaline should be given into a large vein (see Warnings and Precautions).

LEVOPHED™ 1:1000 contains no antimicrobial preservative. It is for single use in one patient only. Discard any residue.

Parenteral drug products should be inspected visually for particulate matter and discolouration prior to use, whenever solution and container permit.

Discoloured solutions or those containing a precipitate should not be used.

Avoid contact with iron salts, alkalis, or oxidising agents.

Restoration of Blood Pressure in Acute Hypotensive States

Blood volume depletion should always be corrected as fully as possible before any vasopressor is administered. When, as an emergency measure, intra-aortic pressures must be maintained to prevent cerebral or coronary artery ischaemia, noradrenaline can be administered before and concurrently with blood volume replacement.

Diluent

LEVOPHED™ 1:1000 should be diluted in five percent (5%) dextrose injection or five percent (5%) dextrose and sodium chloride injections. These dextrose containing fluids provide protection against significant loss of potency due to oxidation. Administration in saline solution alone is not recommended. Whole blood or plasma, if indicated to increase blood volume, should be administered separately (for example, by use of a Y-tube and individual containers if given simultaneously).

Average Dosage

Ampoules: Add two, 2 mL ampoules (4mL) of LEVOPHED™ 1:1000 (4 mg of noradrenaline) to 1,000 mL of a 5% dextrose containing solution

Vials: Add one, 4 mL vial of LEVOPHED™ 1:1000 (4 mg of noradrenaline) to 1,000 mL of a 5% dextrose containing solution

Each 1 mL of this dilution contains 4 micrograms of the base of noradrenaline (or 8 micrograms of the acid tartrate). Give this solution by intravenous infusion. Insert a plastic intravenous catheter through a suitable bore needle well advanced centrally into the vein and securely fixed with adhesive tape, avoiding, if possible, a catheter tie-in technique as this promotes stasis. An I.V. drip chamber or other suitable metering device is essential to permit an accurate estimation of the rate of flow in drops per minute.

After observing the response to an initial dose of 2 mL to 3 mL (from 8 micrograms to 12 micrograms of base) per minute, adjust the rate of flow to establish and maintain a low normal blood pressure (usually 80 mmHg to 100 mmHg systolic) sufficient to maintain the circulation to vital organs. In previously hypertensive patients, it is recommended that the blood pressure should be raised no higher than 40 mmHg below the pre-existing systolic pressure. The average maintenance dose ranges from 0.5 mL to 1 mL per minute (from 2 micrograms to 4 micrograms of base).

High Dosage

Great individual variation occurs in the dose required to attain and maintain an adequate blood pressure. In all cases, dosage of noradrenaline should be titrated according to the response of the patient. Occasionally much larger or even enormous daily doses (as high as 68 mg base or 34 ampoules) may be necessary if the patient remains hypotensive, but occult blood volume depletion should always be suspected and corrected when present. Central venous pressure monitoring is usually helpful in detecting and treating this situation.

Fluid Intake
The degree of dilution depends on clinical fluid volume requirements. If large volumes of fluid (dextrose) are needed at a flow rate that would involve an excessive dose of the pressor agent per unit of time, a solution more dilute than 4 micrograms per mL should be used. On the other hand, when large volumes of fluid are clinically undesirable, a concentration greater than 4 micrograms per mL may be necessary.

Duration of Therapy
The infusion should be continued until adequate blood pressure and tissue perfusion are maintained without therapy. Infusions of noradrenaline should be reduced gradually, avoiding abrupt withdrawal. In some of the reported cases of vascular collapse due to acute myocardial infarction, treatment was required for up to six days.

Adjunctive Treatment in Cardiac Arrest
Infusions of noradrenaline are usually administered intravenously during cardiac resuscitation to restore and maintain an adequate blood pressure after an effective heartbeat and ventilation have been established by other means. [Noradrenaline's beta-adrenergic stimulating action is also thought to increase the strength and effectiveness of systolic contractions once they occur.]

Average Dosage
To maintain systemic blood pressure during the management of cardiac arrest, noradrenaline is used in the same manner as described under Restoration of Blood Pressure in Acute Hypotensive States.

Paediatric Use
Safety and effectiveness in paediatric patients has not been established.

Use in the elderly
In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other therapy.

Noradrenaline infusions should not be administered into the veins in the leg in elderly patients (see Precautions, Site of Infusion).

Contraindications
Noradrenaline should not be given to patients who are hypotensive from blood volume deficits except as an emergency measure to maintain coronary and cerebral artery perfusion until blood volume replacement therapy can be completed. If noradrenaline is continuously administered to maintain blood pressure in the absence of blood volume replacement, the following may occur: severe peripheral and visceral vasoconstriction, decreased renal perfusion and urine output, poor systemic blood flow despite "normal" blood pressure, tissue hypoxia, and lactate acidosis.

Noradrenaline should also not be given to patients with mesenteric or peripheral vascular thrombosis (because of the risk of increasing ischaemia and extending the area of infarction) unless, in the opinion of the attending physician, the administration of noradrenaline is necessary as a life-saving procedure.

Cyclopropane and halothane anaesthetics increase cardiac autonomic irritability and therefore seem to sensitize the myocardium to the action of intravenously administered adrenaline or noradrenaline. Hence, the use of noradrenaline during cyclopropane and halothane anaesthesia is generally considered contraindicated because of the risk of producing ventricular tachycardia or fibrillation.

The same type of cardiac arrhythmias may result from the use of noradrenaline in patients with profound hypoxia or hypercarbia.
Warnings and precautions

Warnings

LEVOPHED™ 1:1000 should be used with extreme caution in patients receiving monoamine oxidase inhibitors (MAOI) or antidepressants of the triptyline or imipramine types, because severe, prolonged hypertension may result.

LEVOPHED™ 1:1000 contains sodium metabisulphite, which may cause allergic-type reactions including anaphylactic symptoms and life-threatening or less severe asthmatic episodes in certain susceptible people. The overall prevalence of sulphite sensitivity in the general population is unknown and probably low. Sulphite sensitivity is seen more frequently in asthmatic than non-asthmatic people.

Precautions

General

Avoid Hypertension

Because of the potency of noradrenaline and because of varying response to pressor substances, the possibility always exists that dangerously high blood pressure may be produced with overdoses of this pressor agent. It is desirable, therefore, to record the blood pressure every two minutes from the time administration is started until the desired blood pressure is obtained, then every five minutes if administration is to be continued.

The rate of flow must be watched constantly, and the patient should never be left unattended while receiving noradrenaline. Headache may be a symptom of hypertension due to overdosage.

Hypersensitivity

Certain patients may be hypersensitive to the effects of LEVOPHED™ 1:1000, e.g. patients with hyperthyroidism (see Adverse effects).

Site of Infusion

Whenever possible, infusions of noradrenaline should be given into a large vein, particularly an antecubital vein because, when administered into this vein, the risk of necrosis of the overlying skin from prolonged vasoconstriction is apparently very slight. Some authors have indicated that the femoral vein is also an acceptable route of administration. A catheter tie-in technique should be avoided, if possible, since the obstruction to blood flow around the tubing may cause stasis and increased local concentration of noradrenaline. Occlusive vascular diseases (for example, atherosclerosis, arteriosclerosis, diabetic endarteritis, Buerger’s disease) are more likely to occur in the lower than in the upper extremity. Therefore, one should avoid the veins of the leg in elderly patients or in those suffering from such disorders. Gangrene has been reported in a lower extremity when infusions of noradrenaline were given in an ankle vein.

Extravasation

The infusion site should be checked frequently for free flow. Care should be taken to avoid extravasation of noradrenaline into the tissues, as local necrosis might ensue due to the vasoconstrictive action of the drug. Blanching along the course of the infused vein, sometimes without obvious extravasation, has been attributed to vasa vasorum constriction with increased permeability of the vein wall, permitting some leakage. This also may progress on rare occasions to superficial slough, particularly during infusion into leg veins in elderly patients or in those suffering from obliterative vascular disease. Hence, if blanching occurs, consideration should be given to changing the infusion site at intervals to allow the effects of local vasoconstriction to subside.

IMPORTANT -- Antidote for Extravasation Ischaemia

The antidote for extravasation ischaemia is phentolamine. To prevent sloughing and necrosis in areas in which extravasation has taken place, the area should be infiltrated as soon as possible with 10 mL to 15 mL of saline solution containing from 5 mg to 10 mg of phentolamine, an adrenergic blocking agent. A syringe with a fine hypodermic needle should be used, with the solution being infiltrated liberally throughout the area, which is easily identified by its cold, hard, and palid appearance. Sympathetic blockade with phentolamine causes immediate and conspicuous local hyperaemic changes if the area is infiltrated within 12 hours. Therefore, phentolamine should be given as soon as possible after the extravasation is noted.
Effects on Fertility
Studies have not been performed.

Pregnancy
Category B3
LEVOPHED™ 1:1000 should be given to a pregnant woman only if clearly needed.

Animal studies indicate noradrenaline may impair placental perfusion and induce foetal bradycardia. It may also exert a contractile effect on the pregnant uterus and lead to foetal asphyxia in late pregnancy. However, the clinical significance of these changes to a human foetus is unknown. These possible risks to the foetus should therefore be weighed against the potential benefit to the mother.

Nursing Mothers
It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when noradrenaline is administered to a nursing woman.

Paediatric Use
Safety and effectiveness in paediatric patients has not been established.

Use in the elderly
Clinical studies of noradrenaline did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other therapy.

Noradrenaline infusions should not be administered into the veins in the leg in elderly patients (see Precautions, Site of Infusion).

Genotoxicity
Studies have not been performed.

Carcinogenicity
Studies have not been performed.

Adverse effects
The following reactions can occur:

Body As A Whole
Ischaemic injury due to potent vasoconstrictor action and tissue hypoxia.

Cardiovascular System
Bradycardia, probably as a reflex of a rise in blood pressure, arrhythmias.

Nervous System
Anxiety, transient headache.

Respiratory System
Respiratory difficulty.

Skin and Appendages
Extravasation necrosis at injection site.

Prolonged administration of any potent vasopressor may result in plasma volume depletion which should be continuously corrected by appropriate fluid and electrolyte replacement therapy. If plasma volumes are not corrected, hypotension may recur when noradrenaline is discontinued, or blood pressure may be maintained at the risk of severe peripheral and visceral vasoconstriction (e.g. decreased renal perfusion) with diminution in blood flow and tissue perfusion with subsequent tissue hypoxia and lactic acidosis and
possible ischaemic injury. Gangrene of extremities has been rarely reported. Bradycardia sometimes occurs, probably as a reflex result of a rise in blood pressure.

Overdoses or conventional doses in hypersensitive persons (e.g. hyperthyroid patients) cause severe hypertension with violent headache, photophobia, stabbing retrosternal pain, pallor, intense sweating, and vomiting.

Interactions

Cyclopropane and halothane anaesthetics increase cardiac autonomic irritability and therefore seem to sensitisie the myocardium to the action of intravenously administered adrenaline or noradrenaline. Hence, the use of noradrenaline during cyclopropane and halothane anaesthesia is generally considered contraindicated because of the risk of producing ventricular tachycardia or fibrillation. The same type of cardiac arrhythmias may result from the use of noradrenaline in patients with profound hypoxia or hypercarbia.

Noradrenaline should be used with extreme caution in patients receiving monoamine oxidase inhibitors (MAOI) or antidepressants of the triptyline or imipramine types, because severe, prolonged hypertension may result.

LEVOPHED™ 1:1000 infusion solutions should not be mixed with other medicines. Infusion solutions containing noradrenaline acid tartrate have been reported to be incompatible with iron salts, alkalis and oxidising agents, barbituates, chlorpheniramine, chlorothiazide, nitrofurantoin, phenytoin, sodium bicarbonate, sodium iodide, streptomycin, sulfadiazine and sulfafurazole.

Overdosage

Overdosage with noradrenaline may result in headache, severe hypertension, reflex bradycardia, marked increase in peripheral resistance, and decreased cardiac output. Headache may indicate severe hypertension. In case of accidental overdosage, as evidenced by excessive blood pressure elevation, discontinue noradrenaline until the condition of the patient stabilises.

In case of overdose, immediately contact the New Zealand Poisons Information Centre for advice on 0800 764 766.

Pharmaceutical Precautions

Store below 25°C. Do not freeze. Protect from light.

Keep out of reach of children.

Medicine Classification

Prescription Medicine

Package Quantities

LEVOPHED™ 1:1000 is available as a single use ampoule, 2 mg/2 mL and single use vial (4 mg/4 mL). It is supplied in packs of 5 ampoules per carton or packs of 10 vials per carton.

Each ampoule contains the equivalent of 2 mg of noradrenaline, as the acid tartrate. Each vial contains the equivalent of 4 mg of noradrenaline, as the acid tartrate.

Further Information

The chemical structure of noradrenaline acid tartrate is shown below:

Chemically, Noradrenaline Acid Tartrate, (1R)-2-Amino-1-(3,4-dihydroxyphenyl)ethanol
hydrogen \((2R,3R)\)-2,3-dihydroxybutanedioate monohydrate, is a white or almost white crystalline powder. It is freely soluble in water, and slightly soluble in ethanol (96%).

Molecular Formula: \(\text{C}_{12}\text{H}_{17}\text{NO}_5\cdot\text{H}_2\text{O}\)
Molecular Weight: 337.3
CAS Registry No.: 69815-49-2

Name and Address
Pfizer New Zealand Limited,
PO Box 3998
Auckland, New Zealand, 1140

Toll Free Number: 0800 736 363

Date of Preparation
07 July 2017