DBL™ PHENYTOIN INJECTION BP

NAME OF MEDICINE
DBL™ Phenytoin Injection BP 100 mg/2 mL and 250 mg/5 mL ampoules

PRESENTATION
Phenytoin sodium is the sodium salt of phenytoin. It is a white, odourless, slightly hygroscopic crystalline powder. It is soluble in water and alcohol. DBL™ Phenytoin Injection BP is a ready mixed solution of phenytoin sodium. Each millilitre of solution contains phenytoin sodium 50 milligrams, propylene glycol 0.4 mL and ethanol 0.1 mL in Water for Injections, adjusted to pH 12 with either sodium hydroxide or hydrochloric acid. DBL™ Phenytoin Injection BP is a clear, colourless solution, free from visible particulates. The chemical name of phenytoin sodium is sodium 5,5-diphenyl-2,4-imidazolidinedione, its chemical formula is C_{15}H_{11}N_{2}NaO_{2} and its structural formula is shown below:

![Chemical Structure of Phenytoin Sodium]

MW: 274.3
CAS registry No: 630-93-3

USES
Actions
Phenytoin sodium is a hydantoin derivative anticonvulsant. It inhibits the spread of seizure activity in the motor cortex. Epileptic seizures are thought to occur through the development of excessive central excitability due to post tetanic potentiation, which is blocked by phenytoin.

The primary target of phenytoin in the central nervous system appears to be sodium channels in depolarising neurones, where phenytoin binds and blocks sodium influx, reducing neuronal excitability and the spread of electrical activity characteristic of epileptic seizures. Phenytoin may also suppress sodium action potentials by stimulating the sodium pump. Other mechanisms possibly contributing to the antiepileptic activity of phenytoin include inhibition of neuronal calcium influx, enhancement of GABA neurotransmission, block of ionotropic receptors for glutamate (a transmitter implicated in seizure activity) and an action at central sigma binding sites.

The antiarrhythmic action of phenytoin may be attributed to the normalisation of influx of sodium and calcium to cardiac Purkinje fibres. Abnormal ventricular automaticity and membrane responsiveness are decreased. It also shortens the refractory period, and therefore shortens the QT interval and the duration of the action potential.

Pharmacokinetics
Absorption: Absorption from an intravenous dose of phenytoin is immediate and bioavailability from the intravenous route is essentially 100%. The onset of action after an intravenous dose is 30 to 60 minutes and the effect persists up to 24 hours.
Distribution: Phenytoin is distributed into cerebrospinal fluid, saliva, semen, gastrointestinal fluids, bile, and breast milk; also crosses the placenta, with foetal serum concentrations equal to those of the mother.

Protein binding: Phenytoin is about 90% protein bound. As phenytoin is highly protein bound, free phenytoin levels may be altered in patients whose protein binding characteristics differ from normal. Protein binding may be lower in neonates and hyperbilirubinaemic infants; also altered in patients with hypoalbuminaemia, uraemia or acute trauma, and in pregnancy. Therapeutic concentrations of free (unbound) phenytoin, which are frequently monitored in patients with altered protein binding, usually fall in the range of 0.8 to 2 micrograms per mL (3 to 8 micromoles per L).

Half life: The plasma half life is normally from 10 to 15 hours. Because phenytoin exhibits saturable or dose dependent pharmacokinetics, the apparent half life of phenytoin changes with dose, and serum concentration. At therapeutic concentrations of the drug, the enzyme system responsible for metabolising phenytoin becomes saturated. Thus, a constant amount of drug is metabolised, and small increases in dose may cause disproportionately large increases in serum concentrations and apparent half life, possibly causing unexpected toxicity.

Conventionally, with drugs following linear kinetics the half life is used to determine the dose rate, drug accumulation and the time to reach steady state. Phenytoin, however, demonstrates non-linear kinetics. Therefore, the half life is affected by the degree of absorption, saturation of metabolic pathways, dose and degree of metabolic enzyme induction. This results in considerable inter- and intra-patient variability in phenytoin pharmacokinetics. As a consequence the clinical relevance of reported phenytoin half life values are limited and cannot be used in the conventional manner to estimate the dosage regimen.

Therapeutic serum concentrations: When administering phenytoin to a patient, it is necessary to measure the serum levels as this provides the most accurate means of deriving a suitable dosage regimen. Serum level determinations should originally be obtained at least 7 to 10 days after treatment initiation, dosage change, or addition or subtraction of another drug to the regimen so that equilibrium or steady state will have been achieved. Further serum level determinations may be required to further refine the dosage regimen. Trough levels provide information about clinically effective serum level range and confirm patient compliance and are obtained just prior to the patient’s next scheduled dose. Peak levels indicate an individual’s threshold for emergence of dose related side effects and are obtained at the time of expected peak concentration.

Optimum control without clinical signs of toxicity occurs most often with serum levels between 10 and 20 micrograms/mL. In renal failure or hypoalbuminaemia, 5 to 12 micrograms/mL or even less may be therapeutic. Occasionally a patient may have seizure control with plasma concentrations of 6 to 9 micrograms/mL. Effective treatment, therefore, should be guided by clinical response, not drug concentrations. In most patients maintained at a steady dosage, stable phenytoin serum levels are achieved. There may be wide inter-patient variability in phenytoin serum levels with equivalent dosages. Patients with unusually low levels may be non-compliant or hypermetabolisers of phenytoin. Unusually high levels of phenytoin result from liver disease, congenital enzyme deficiency or drug interactions which result in metabolic interference. The patient with large variations in phenytoin plasma levels, despite standard doses, presents a difficult clinical problem. Serum level determinations in such patients may be particularly helpful.

Elimination: Phenytoin is metabolised in the liver; the major inactive metabolite is 5-(p-hydroxyphenyl)-5-phenylhydantoin (HPPH). The rate of metabolism is increased in younger
children, pregnant women, in women during menses and in patients with acute trauma. The rate decreases with advancing age. Phenytoin may be metabolised slowly in a small number of individuals due to genetic polymorphism, which may cause isoenzyme mutations (e.g. CYP2C9/19), limited enzyme availability and lack of induction (e.g. CYP3A4).

Most of the drug is excreted in the bile as inactive metabolites which are then reabsorbed from the intestinal tract and excreted in the urine. Urinary excretion of phenytoin and its metabolites occurs partly by glomerular filtration but more importantly by tubular secretion.

INDICATIONS
For the control of status epilepticus, tonic-clonic (grand mal), psychomotor seizures and the prevention of seizures occurring during or following neurosurgery. Phenytoin will prevent or effectively decrease the incidence and severity of convulsive seizures in a high percentage of cases, with patients exhibiting little tendency to become resistant to its action. Besides its effectiveness in controlling seizures, phenytoin frequently improves the mental condition and outlook of epileptic patients.

It has also been used in the treatment of certain cardiac arrhythmias, particularly in those patients who do not respond to conventional antiarrhythmic agents or to cardioversion.

Phenytoin serum level determinations may be necessary for optimal dosage adjustments (see **DOSAGE AND ADMINISTRATION**).

CONTRAINDICATIONS
Phenytoin is contraindicated in patients with:

1. Known hypersensitivity to phenytoin or other hydantoins.
2. Sinus bradycardia, sino-atrial block, second and third degree AV block or Stokes Adams syndrome due to its effect on ventricular automaticity.

WARNINGS AND PRECAUTIONS
Abrupt withdrawal of phenytoin in epileptic patients may precipitate status epilepticus. When the need arises for a dosage reduction of phenytoin, or discontinuation or substitution of alternative anticonvulsant therapy is required, this should be done gradually. In hypersensitivity reactions, where rapid substitution of therapy is warranted, the alternative drug should be one not belonging to the hydantoin class of compounds.

The mixing of phenytoin sodium with other drugs or with intravenous infusion solutions is not recommended because the solubility of phenytoin sodium is such that crystallisation or precipitation may result if the special vehicle is altered or the pH is lowered.

Soft tissue irritation and inflammation, varying from slight tenderness to extensive necrosis and sloughing, has been noted at the site of injection with and without the extravasation of IV phenytoin. Each injection of phenytoin should be followed by an injection of sodium chloride intravenous infusion 0.9% through the same needle or catheter to avoid irritation caused by the alkalinity of the solution.

This drug must be administered slowly, at a rate not exceeding 50 milligrams/min in adults. Administration at faster rates may result in cardiac arrhythmias, impaired cardiac conduction, hypotension, cardiovascular collapse or CNS depression, related to the propylene glycol diluent. In children and neonates, the drug should be administered at a rate not exceeding 1 to 3 milligrams/kg/min, (maximum of 50 milligrams/min).
The response to phenytoin may be significantly altered by the concomitant use of other drugs (see **Interactions with other medicines**).

Phenytoin should be used with caution in patients with hypotension and severe myocardial insufficiency. Hypotension usually occurs when the drug is administered rapidly by the IV route.

In patients with cardiovascular disease, parenteral administration may result in atrial and ventricular conduction depression, ventricular fibrillation or reduced cardiac output.

Intramuscular administration of phenytoin sodium is not recommended due to erratic absorption and local tissue reactions, such as tissue necrosis, caused by the alkalinity of the solution. Erratic absorption is partly caused by tissue precipitation of phenytoin.

While macrocytosis and megaloblastic anaemia have occurred, these conditions usually respond to folic acid therapy. If folic acid is added to phenytoin therapy, a decrease in seizure control may occur (see **Interactions with other medicines**).

Osteomalacia has been associated with phenytoin therapy and is considered to be due to phenytoin’s interference with vitamin D metabolism (see **ADVERSE EFFECTS**).

It is recommended that patients receiving long term phenytoin therapy should undergo regular blood counts as serious adverse haematological reactions have been reported (see **ADVERSE EFFECTS**).

Caution should be used when administering phenytoin to patients suffering from porphyria. There have been isolated reports linking phenytoin to exacerbation of this disease.

Toxic hepatitis, liver damage and hypersensitivity syndrome have been reported and may, in rare cases, be fatal.

A small percentage of individuals who have been treated with phenytoin have been shown to metabolise the drug slowly. Slow metabolism appears to be due to limited enzyme availability and lack of or defective induction, which may be genetically determined (see **Pharmacokinetics - Elimination**).

There have been a number of reports suggesting a relationship between phenytoin and the development of local or generalised lymphadenopathy, including benign lymph node hyperplasia, lymphoma, pseudolymphoma and Hodgkin’s Disease. Although a cause and effect relationship has not been established, the occurrence of lymphadenopathy requires differentiation from other types of lymph node pathology. Lymph node involvement may occur with or without symptoms resembling serum sickness e.g. rash, fever and liver involvement. In all cases of lymphadenopathy, seizure control should be sought using alternative antiepileptic drugs and observation of patients for an extended period is recommended.

Anticonvulsant Hypersensitivity Syndrome (AHS) is a rare drug induced, multiorgan syndrome which is potentially fatal and occurs in some patients taking anticonvulsant medication. It is characterised by fever, rash, lymphadenopathy, and other multiorgan pathologies, often hepatic. The mechanism is unknown. The interval between first drug exposure and symptoms is usually 2-4 weeks but has been reported in individuals receiving anticonvulsants for 3 or more months.
Patients at higher risk for developing AHS include African American patients, patients who have a family history of or who have experienced this syndrome in the past, and immunosuppressed patients. The syndrome is more severe in previously sensitised individuals. If a patient is diagnosed with AHS, discontinue the phenytoin and provide appropriate supportive measures.

Serum levels of phenytoin sustained above the optimal range may produce encephalopathy, or confusional states (delirium psychosis), or rarely irreversible cerebellar dysfunction. Plasma level determinations are recommended at the first signs of acute toxicity. If plasma levels are excessive, then dosage reduction is indicated. Termination is recommended if symptoms persist (see WARNINGS AND PRECAUTIONS).

Literature reports suggest the combination of phenytoin, cranial irradiation and the gradual reduction of corticosteroids may be associated with the development of erythema multiforme and/or Stevens-Johnson syndrome (SJS) and/or toxic epidermal necrolysis (TEN).

Phenytoin can cause rare, serious skin adverse events such as exfoliative dermatitis, SJS, and TEN, which can be fatal. Although serious skin reactions may occur without warning, patients should be alert for the signs and symptoms of skin rash and blisters, fever, or other signs of hypersensitivity such as itching, and should seek medical advice from their physician immediately when observing any indicative signs or symptoms. The physician should advise the patient to discontinue treatment if the rash appears. If the rash is of a milder type (measles-like or scarlatiniform), therapy may be resumed after the rash has completely disappeared. If the rash recurs upon re-institution of therapy, further phenytoin medication is contraindicated. Published literature has suggested that there may be an increased, although still rare, risk of hypersensitivity reactions, including skin rash, SJS, TEN, hepatotoxicity, and AHS in African American patients.

Studies in patients of Chinese ancestry have found a strong association between the risk of developing SJS/TEN and the presence of the HLA-B*1502, an inherited allelic variant of the HLA-B gene, in patients using another anticonvulsant, carbamazepine. Limited evidence suggests that HLA-B*1502 may be a risk factor for the development of SJS/TEN in patients of Asian ancestry taking drugs associated with SJS/TEN, including phenytoin. Consideration should be given to avoiding use of drugs associated with SJS/TEN, including phenytoin, in HLA-B*1502 positive patients when alternative therapies are otherwise equally available.

Phenytoin is not effective for absence (petit mal) seizures as it may increase the frequency of these seizures. Therefore, combined therapy is required if both tonic-clonic (grand mal) and absence (petit mal) seizures are present.

Phenytoin should be used with caution in diabetic patients, as hyperglycaemia may be potentiated. There have been isolated reports of hyperglycaemia occurring in patients receiving phenytoin, resulting from the drug’s inhibitory effects on insulin release. Phenytoin may also raise the serum glucose in diabetic patients. Patients with impaired renal function appear to be more susceptible to this effect.

Phenytoin is not indicated for the treatment of seizures due to hypoglycaemia or other metabolic causes. The appropriate diagnostic tests should be performed as indicated.

Caution should also be given in patients with hypoalbuminaemia as this condition can lead to potential toxicity through its effect on increasing unbound phenytoin levels (see Pharmacokinetics).
Suicidal Behaviour and Ideation

Antiepileptic drugs (AED’s), including phenytoin, increase the risk of suicidal thoughts or behaviour in patients taking these drugs for any indication. Patients treated with any AED for any indication should be monitored for the emergence or worsening of depression, suicidal thoughts or behaviour, and/or any unusual changes in mood or behaviour.

Pooled analyses of 199 placebo-controlled clinical trials (mono- and adjunctive therapy) of 11 different AEDs showed that patients randomised to one of the AEDs had approximately twice the risk (adjusted Relative Risk 1.8, 95% CI:1.2, 2.7) of suicidal thinking or behaviour compared to patients randomised to placebo. In these trials, which had a median treatment duration of 12 weeks, the estimated incidence rate of suicidal behaviour or ideation among 27, 863 AED-treated patients was 0.43% compared to 0.24% among 16,029 placebo-treated patients, representing an increase of approximately one case of suicidal thinking or behaviour for every 530 patients treated. There were four suicides in drug-treated patients in the trials and none in placebo-treated patients, but the number is too small to allow any conclusion about drug effect on suicide.

The increased risk of suicidal thoughts or behaviour with AEDs was observed as early as one week after starting drug treatment with AEDs and persisted for the duration of treatment assessed. Because most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behaviour beyond 24 weeks could not be assessed. The risk of suicidal thoughts or behaviour was generally consistent among drugs in the data analysed. The finding of increased risk with AEDs of varying mechanisms of action and across a range of indications suggests that the risk applies to all AEDs used for any indication. This risk did not vary substantially by age (5 – 100 years) in the clinical trials analysed. Table 1 shows absolute and relative risk by indication for all evaluated AEDs.

Table 1: Risk by Indication for antiepileptic drugs in the pooled analysis

<table>
<thead>
<tr>
<th>Indication</th>
<th>Placebo patients with events / 1000 patients</th>
<th>Drug patients with events / 1000 patients</th>
<th>Relative Risk: Incidence of events in Drug patients / incidence in Placebo patients</th>
<th>Risk Difference: Additional Drug patients with events per 1000 patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epilepsy</td>
<td>1.0</td>
<td>3.4</td>
<td>3.5</td>
<td>2.4</td>
</tr>
<tr>
<td>Psychiatric</td>
<td>5.7</td>
<td>8.5</td>
<td>1.5</td>
<td>2.9</td>
</tr>
<tr>
<td>Other</td>
<td>1.0</td>
<td>1.8</td>
<td>1.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Total</td>
<td>2.4</td>
<td>4.3</td>
<td>1.8</td>
<td>1.9</td>
</tr>
</tbody>
</table>

The relative risk for suicidal thoughts or behaviour was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indications.
Anyone considering prescribing phenytoin or any other AED must balance this risk with the risk of untreated illness. Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behaviour. Should suicidal thoughts and behaviour emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated.

Patients, their caregivers, and families should be informed that AEDs increase the risk of suicidal thoughts and behaviour and should be advised of the need to be alert for the emergence of worsening of the signs and symptoms of depression, any unusual changes in mood or behaviour, or the emergence of suicidal thoughts, behaviour, or thoughts about self-harm. Behaviours of concern should be reported immediately to the treating doctor.

Use in elderly
Severe complications are most commonly encountered in elderly or gravely ill patients. In these patients, the drug should be administered at a rate not exceeding 25 milligrams/min, and if necessary, at a slow rate of 5 to 10 milligrams/min. Elderly patients have an increased frequency of toxicity due to their slower rate of phenytoin metabolism and decreased serum albumin concentration, which decreases the degree of protein binding of phenytoin. Therefore, lower doses and subsequent dosage adjustment may be necessary.

Use in renal/liver impairment
Patients with renal function impairment should be carefully observed, as excretion and protein binding of phenytoin may be altered. Similarly, as the main site of biotransformation for phenytoin is in the liver, patients with impaired liver function may show early signs of toxicity on standard dosage. Care should be exercised with dosage adjustment in these patients.

Use in pregnancy
Category D
Drugs which have caused, are suspected to have caused or may be expected to cause, an increased incidence of human foetal malformations or irreversible damage. These drugs may also have adverse pharmacological effects. Accompanying texts should be consulted for further details.

The risk of a mother with epilepsy and taking anticonvulsants giving birth to a baby with an abnormality is about three times that of the general population. Mothers taking more than one anticonvulsant drug have a higher risk of having a baby with a malformation than mothers taking one drug. Women with epilepsy should take folic acid supplements of 5 mg daily before, and for 12 weeks after conception.

Phenytoin sodium taken during pregnancy has been associated with cranofacial defects, fingernail hypoplasia, developmental disability, growth retardation and less frequently, oral clefts and cardiac anomalies. This clinical pattern is sometimes called the “foetal hydantoin syndrome”. Phenytoin can also cause coagulation defects with consequent risk of haemorrhage in the foetus and the newborn infant that may be preventable by the prophylactic administration of vitamin K to the mother prior to delivery.

The great majority of mothers on anticonvulsant medication deliver normal infants. It is important to note that anticonvulsant drugs should not be discontinued in patients in whom the drug is administered to prevent major seizures because of the strong possibility of precipitating status epilepticus with attendant hypoxia and threat to life.
An increase in seizure frequency during pregnancy occurs in a high proportion of patients because of altered phenytoin absorption or metabolism. Periodic measurement of serum phenytoin levels is particularly valuable in the management of a pregnant epileptic patient as a guide to an appropriate adjustment of dosage. However, postpartum restoration of the original dosage will probably be indicated. Some patients may experience a rapid reduction in maternal hepatic phenytoin metabolism at the time of delivery, requiring the dosage to be reduced within 12 hours postpartum.

Malignancies such as neuroblastoma have been reported rarely in children whose mothers received phenytoin during pregnancy.

Use in Lactation
Infant breastfeeding is not recommended for women taking this drug because phenytoin appears to be secreted in low concentrations in breast milk.

Carcinogenicity, mutagenicity, impairment of fertility
In two studies in mice, increased incidences of hepatic adenoma were seen when phenytoin sodium was administered at dietary doses of 45 and 90 mg/kg/day. The incidence of hepatic carcinoma was also increased in one of these studies. These effects were seen at plasma phenytoin concentrations slightly lower than the human therapeutic range. In rats, the incidence of hepatic adenoma was marginally increased at 240 mg/kg/day in one study, but was not affected at 100 mg/kg/day in another. In the latter study, plasma concentrations of phenytoin were slightly lower than the human therapeutic range. In two other studies, no carcinogenic effects were seen at low doses (16 mg/kg/day in mice and 20 mg/kg/day in rats). Phenytoin induced hepatic tumours in rodents may be secondary to hepatic enzyme induction, and are of uncertain clinical relevance.

In genotoxicity studies with phenytoin sodium, negative results were obtained in assays for chromosomal damage in mammalian cells in vitro and in vivo and in a sister chromatid exchange assay in vivo. The potential for phenytoin sodium to cause gene mutations has not been investigated.

In studies in which phenytoin sodium was administered orally to female mice and rats for two weeks before breeding and throughout gestation and lactation, no pregnancies occurred at respective doses of 90 mg/kg/day and 240 mg/kg/day; there were no adverse effects at respective doses of 30 and 80 mg/kg/day.

Interactions with Other medicines
A number of drugs have been noted to increase or decrease the effects of phenytoin either through an effect on metabolic degradation of phenytoin, interference with protein binding, altered absorption or by unknown mechanisms.

Use with St. John’s Wort
Herbal preparations containing St. John’s Wort (Hypericum perforatum) should not be used while taking phenytoin due to the risk of decreased plasma concentrations and reduced clinical effects of phenytoin.

The activities of some enzymes such as, CYP P450 isoenzymes, the uridine diphosphate glucuronosyl transferase (UDPGT) system and epoxide hydrolase enzymes, are significantly increased by phenytoin therapy, which in turn enhances the metabolism of many drugs. Phenytoin may also compete with drugs metabolised by the same CYP isoenzyme (CYP2C9 and CYP2C19), which would decrease the metabolic clearance of these drugs.
Increased phenytoin plasma concentrations have been reported during concomitant use of phenytoin with capecitabine or its metabolite fluorouracil. Formal interaction studies between phenytoin and capecitabine have not been conducted, but the mechanism of interaction is presumed to be inhibition of CYP2C9 isoenzyme system by capecitabine. Serum levels of phenytoin sustained above the optimal range may produce encephalopathy, or confusional states (delirium psychosis), or rarely irreversible cerebellar dysfunction. Therefore, patients taking phenytoin concomitantly with capecitabine or fluorouracil should be regularly monitored for increased phenytoin plasma levels.

Medicines which may increase phenytoin serum levels:

Medicine classes	**Medicines in each class**
Analgesics/anti-inflammatory agents | • phenylbutazone
• salicylates
Anaesthetics | • halothane
Antibacterial agents | • chloramphenicol
• erythromycin
• isoniazid
• sulfonamides
Anticonvulsants | • succinimides (ethosuximide, methsuximide and phensuximide)
• mephenytoin
• topiramate
Antifungal agents | • amphotericin B
• fluconazole
• itraconazole
• ketoconazole
• miconazole
Benzodiazepines/psychotropic agents | • chlordiazepoxide
• diazepam
• methylphenidate
• phenothiazines
Calcium channel antagonists/cardiovascular agents | • amiodarone
• diltiazem
• nifedipine
H₂ antagonists/proton pump inhibitors | • cimetidine
• omeprazole
• ranitidine
Hormones | • oestrogens
Oral hypoglycaemic agents | • tolbutamide
Serotonin reuptake inhibitors | • fluoxetine
Other | • coumarin anticoagulants
• disulfiram
• ticlopidine

Medicines which may decrease serum levels of phenytoin:

Medicine classes	**Medicines in each class**
Anticonvulsants | • carbamazepine
• vigabatrin
Antibacterial agents | • fluoroquinolones (e.g. ciprofloxacin)
Cardiovascular agents | • diazoxide
Phenytoin levels may be reduced by 20 to 30% when co-administered with vigabatrin; in some patients this may require a dosage adjustment.

Medicines which may either increase or decrease phenytoin serum levels:

<table>
<thead>
<tr>
<th>Medicine classes</th>
<th>Medicines in each class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticonvulsants</td>
<td>• carbamazepine</td>
</tr>
<tr>
<td></td>
<td>• barbiturates (e.g. phenobarbitone)</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>• primidone</td>
</tr>
<tr>
<td>Cytotoxic agents</td>
<td>• sodium valproate</td>
</tr>
<tr>
<td></td>
<td>• valproic acid</td>
</tr>
<tr>
<td>Psychotropic agents</td>
<td>• chlordiazepoxide</td>
</tr>
</tbody>
</table>

Acute alcohol intake may increase serum levels of phenytoin sodium while chronic alcohol use may decrease them.

Medicines whose blood levels and/or effects may be altered by phenytoin:

<table>
<thead>
<tr>
<th>Medicine classes</th>
<th>Medicines in each class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibacterial agents</td>
<td>• doxycycline</td>
</tr>
<tr>
<td></td>
<td>• praziquantel</td>
</tr>
<tr>
<td></td>
<td>• rifampicin</td>
</tr>
<tr>
<td></td>
<td>• tetracycline</td>
</tr>
<tr>
<td></td>
<td>• lamotrigine</td>
</tr>
<tr>
<td></td>
<td>• succinimide</td>
</tr>
<tr>
<td>Anticonvulsants</td>
<td>• diazoxide</td>
</tr>
<tr>
<td></td>
<td>• digoxin</td>
</tr>
<tr>
<td></td>
<td>• disopyramide</td>
</tr>
<tr>
<td>Antifungal agents</td>
<td>• frusemide</td>
</tr>
<tr>
<td>Calcium channel antagonists/cardiovascular agents</td>
<td>• lignocaine</td>
</tr>
<tr>
<td></td>
<td>• mexiletine</td>
</tr>
<tr>
<td></td>
<td>• nifedipine</td>
</tr>
<tr>
<td></td>
<td>• nimodipine</td>
</tr>
<tr>
<td></td>
<td>• quinidine</td>
</tr>
<tr>
<td></td>
<td>• verapamil</td>
</tr>
<tr>
<td>Cytotoxic agents</td>
<td>• dacarbazine</td>
</tr>
</tbody>
</table>
Hormones
- oestrogens
- oral contraceptives

Neuromuscular blocking drugs
- pancuronium
- vecuronium

Opioid analgesics
- methadone

Oral hypoglycaemic agents
- glibenclamide
- tolbutamide

Other
- corticosteroids
- coumarin anticoagulants
- cyclosporin
- levodopa
- vitamin D
- xanthines (e.g. theophylline)

Psychotropic agents
- clozapine
- paroxetine

Medicines which may either increase or decrease serum levels of phenytoin sodium and vice versa include: barbiturates, valproic acid and sodium valproate, primidone.

The plasma clearance of lamotrigine is doubled and its elimination half life is reduced by 50% when given in combination with phenytoin; this requires dosage adjustment.

Tricyclic antidepressants, haloperidol, MAO inhibitors and thioxanthenes may precipitate seizures in susceptible patients and phenytoin dosage may need to be adjusted. Caution is advised when nifedipine or verapamil are used concurrently with phenytoin. All are highly protein bound medications; therefore, changes in serum concentrations of the free, unbound medications may occur.

Phenytoin sodium, especially in large doses, may increase serum glucose levels; therefore, dosage adjustments for insulin or oral antidiabetic agents may be necessary.

Concurrent use of phenytoin and oral diazoxide may decrease the efficacy of phenytoin and the hyperglycaemic effect of diazoxide and is not recommended.

Use of IV phenytoin in patients maintained on dopamine may produce sudden hypotension and bradycardia. This appears to be dose-rate dependent. If anticonvulsant therapy is necessary during administration of dopamine, an alternative to phenytoin should be considered.

Concurrent use of IV phenytoin with lignocaine or beta blockers may produce additive cardiac depressant effects. Phenytoin may also increase metabolism of lignocaine.

Concomitant use of fluoxetine in patients stabilised on phenytoin has resulted in elevated plasma phenytoin concentrations and signs and symptoms of phenytoin toxicity. Plasma phenytoin concentrations should be monitored closely during concomitant use of fluoxetine, and the dose of phenytoin adjusted if necessary.

Co-administration of phenytoin and topiramate reduces topiramate levels by 59% and has the potential to increase phenytoin levels by 25% in some patients.

Medicine enteral feeding/nutrition preparations interaction
Patients who must receive continuous enteral feedings should probably receive phenytoin intravenously.
Laboratory Test Interactions
Phenytoin increases blood glucose levels due to inhibition of insulin secretion. Raised serum levels of alkaline phosphatase, hypocalcaemia and osteomalacia have been linked with altered vitamin D metabolism. Elevated serum levels of gamma glutamyl transpeptidase (GGT) and alkaline phosphatase may be related to hepatic enzyme induction. Phenytoin may also produce lower than normal values for dexamethasone or metyrapone. Folic acid, calcium and free thyroxine concentrations and protein bound iodine (PBI) test values may all be reduced.

ADVERSE EFFECTS
The most notable signs of toxicity are cardiovascular collapse and/or CNS depression. Nystagmus is the most frequently reported clinical finding of toxicity and tends to occur when the serum phenytoin concentration exceeds 20 microgram/mL. Toxicity should be minimised by following the appropriate directions (see DOSAGE AND ADMINISTRATION).

Cardiovascular
Periarteritis nodosa has been reported. Severe cardiotoxic reactions and fatalities have been reported, most commonly in gravely ill patients or the elderly (see WARNINGS AND PRECAUTIONS).

Nervous System Disorders
These are the most common reactions encountered with phenytoin and include nystagmus, ataxia, slurred speech, decreased co-ordination and mental confusion. Cases of dizziness, vertigo, insomnia, transient nervousness, stuttering, trembling of hands, unusual excitement, irritability, toxic ambylopia, cognitive impairment, tonic seizures, motor twitchings, somnolence, drowsiness, paraesthesia, taste perversion and headaches have also been reported. These side effects are usually dose related.

There have also been rare reports of phenytoin induced dyskinesias, including chorea, dystonia, tremor and asterixis, similar to those induced by phenothiazine and other neuroleptic drugs. These may be due to sudden administration of IV phenytoin for status epilepticus. The effect usually lasts 24 to 48 hours after discontinuation.

A predominantly sensory peripheral polyneuropathy has been reported for patients on long term phenytoin therapy.

Gastrointestinal
Nausea, vomiting, epigastric pain, dysphagia, loss of taste, anorexia, weight loss and constipation.

Dermatological
A measles like rash is the most common dermatological manifestation. Rashes are sometimes accompanied by fever, are generally more common in children and young adults. Other types of rashes are more rare, more serious forms which may be fatal, include bullous, exfoliative or purpuric dermatitis, systemic lupus erythematosus, Stevens-Johnson syndrome, scarlatiform or morbilliform rashes and toxic epidermal necrolysis (see WARNINGS AND PRECAUTIONS).

Immunologic
Hypersensitivity syndrome (which may include but is not limited to, symptoms such as arthralgias, eosinophilia, fever, liver dysfunction, lymphadenopathy or rash), systemic lupus erythematosus and immunoglobulin abnormalities.
Renal system
Interstitial nephritis

Hepatic system
Potentially fatal cases of toxic hepatitis and liver damage may occur. This effect may be the result of a hypersensitivity reaction.

Musculoskeletal system
Osteomalacia has been associated with phenytoin therapy and is considered to be due to phenytoin’s interference with vitamin D metabolism. Some patients on high phenytoin doses with poor dietary intake of vitamin D, limited sun exposure and reduced levels of physical activity may require vitamin D supplementation.

Fracture has also been reported with phenytoin therapy.

Haemopoietic
Some fatal haemopoietic complications have occasionally been reported in association with the use of phenytoin. These have included thrombocytopaenia, leukopaenia, granulocytopaenia, agranulocytosis, and pancytopaenia with or without bone marrow suppression. Although macrocytosis and megaloblastic anaemia have occurred, these conditions usually respond to folic acid therapy. Lymphadenopathy has also been reported (see WARNINGS AND PRECAUTIONS).

Other
Gingival hyperplasia occurs frequently, usually within the first 6 months, beginning as gingivitis or gum inflammation. Children and young adults do appear more susceptible to gingival hyperplasia than adults. The incidence of gum hyperplasia may be reduced by maintaining good oral hygiene, such as frequent brushing, gum massage and appropriate dental care.

Coarsening of the facial features, enlargement or thickening of the lips, widening of the nasal tip, protrusion of the jaw, gynaecomastia, Dupuytren's contracture, hypertrichosis, immunoglobulin abnormalities, hirsutism and Peyronie's Disease may occur.

Younger patients appear more susceptible to bleeding, tender and enlarged gums. Unusual and excessive body hair growth may be more pronounced in young patients.

Local irritation, inflammation, tenderness, necrosis and sloughing at the injection site have been reported with or without extravasation of IV phenytoin.

Rare reports of pulmonary infiltrates or fibrosis, with symptoms including fever, troubled or quick, shallow breathing, unusual tiredness or weakness, weight loss, loss of appetite and chest discomfort, have also occurred.

Antiepileptics drugs have been associated with an increased risk of suicidal behaviour, suicidal ideation and emergence or worsening of existing depression.

DOSAGE AND ADMINISTRATION

DBL™ Phenytoin Injection BP must be administered slowly. Intravenous administration should not exceed 50 milligrams/min in adults. In neonates and children the drug should be administered at a rate not exceeding 1 to 3 milligrams/kg/min, maximum of 50 milligrams/min.
Dilution of DBL™ Phenytoin Injection BP into intravenous infusion is not recommended due to lack of solubility and resultant precipitation.

The solution is suitable for use as long as it remains free of haziness and precipitate. A precipitate might form if the product has been kept in a refrigerator or freezer. This precipitate will dissolve if allowed to stand at room temperature. The product will then be suitable for use.

DBL™ Phenytoin Injection BP should be injected slowly and directly into a large vein through a large-gauge needle or intravenous catheter. Each injection should be followed by an injection of sodium chloride intravenous infusion 0.9% through the same needle or catheter to avoid local venous irritation due to the alkalinity of the solution. Continuous infusion should be avoided.

Product is for one dose in one patient only. Discard any remaining contents.

Status epilepticus: For the control of status epilepticus in adults, a loading dose of 10 to 15 milligrams/kg should be administered slowly intravenously, at a rate not exceeding 50 milligrams/min. This will require approximately 20 minutes in a 70 kg patient. The loading dose should be followed by maintenance doses of 100 mg orally or intravenously every 6 to 8 hours.

For neonates and children, a loading dose of 10 to 20 milligrams/kg intravenously will usually provide a plasma concentration of phenytoin within the generally accepted therapeutic range (10 to 20 micrograms/mL). The drug should be administered intravenously at a rate not exceeding 1 to 3 milligrams/kg/min, maximum of 50 milligrams/min, (see WARNINGS AND PRECAUTIONS). Children tend to metabolise phenytoin more rapidly than adults, which may affect dosage regimens. Therefore, serum level monitoring may be particularly beneficial in such cases.

In the treatment of status epilepticus, an intravenous benzodiazepine such as diazepam or an intravenous short acting barbiturate, are usually given initially for the rapid control of seizures and are then followed by the slow intravenous administration of phenytoin.

Intramuscular administration of phenytoin is unsuitable for the emergency treatment of status epilepticus due to very slow and erratic absorption from the intramuscular site.

Intra-arterial administration must be avoided in view of the high pH of the preparation.

Dosage should be individualised to obtain maximum benefit. In some cases, serum blood level determinations may be necessary for optimal dosage adjustments. Serum levels between 10 and 20 micrograms/mL (40 to 80 micromoles/L) are considered to be clinically effective. With the recommended dosage, a period of at least 7 to 10 days may be required to achieve therapeutic blood levels of phenytoin unless therapy is initiated with a loading dose. After the initial dose has been prescribed, plasma levels should be determined and the dosage adjusted if necessary to obtain a level in the therapeutic range; 10 to 20 micrograms/mL (40 to 80 micromoles/L).

Neurosurgery: For the prevention of seizures during or following neurosurgery, cautious intravenous administration of 250 milligrams every six to twelve hours is recommended until oral dosage is possible. Plasma levels should be monitored to ensure optimal efficacy and to minimise toxicity. Phenytoin should not be given by intramuscular injection for the prevention of seizures following neurosurgery.
Cardiac arrhythmias: Phenytoin sodium can be useful in ventricular arrhythmias, especially those due to digitalis. Although not a cardiac depressant, it has a positive inotropic effect and enhances conduction, though it generally decreases automatically. The recommended dosage is one intravenous injection of DBL™ Phenytoin Injection BP of 3 to 5 milligrams/kg bodyweight initially, repeating if necessary.

Because there is approximately an 8% increase in drug content in the free form over that of the sodium salt, dosage adjustments and serum level monitoring may be necessary when switching from a product formulated with the free acid to a product formulated with the sodium salt to the form or vice versa.

Continuous monitoring of the electrocardiogram and blood pressure is essential. The patient should be observed for signs of respiratory depression. Determination of phenytoin plasma levels is advised when using phenytoin in the management of status epilepticus and the subsequent establishment of maintenance dosage. Cardiac resuscitative equipment should be available.

OVERDOSAGE
Symptoms
The mean lethal dose in adults is considered to be 2 to 5 grams. The lethal dose in children is not known. The initial symptoms are nystagmus, ataxia, and dysarthria. Other signs are tremor, hyperflexia, lethargy, slurred speech, nausea and vomiting. The patient may become comatose, hypotensive, severely confused, dizzy or drowsy, unusually tired or weak. The patient's pupils may become unresponsive and blurred or double vision may also occur. Other manifestations of accidental intravenous overdose of phenytoin are bradycardia and heart block. Death is due to respiratory and circulatory depression and apnoea.

There are marked variations among individuals with respect to phenytoin plasma levels where toxicity may occur. Nystagmus or lateral gaze, usually appears at 20 micrograms/mL, ataxia at 30 micrograms/mL, dysarthria and lethargy appear when the plasma concentration is over 40 micrograms/mL but as high a concentration as 50 micrograms/mL has been reported without evidence of toxicity.

Treatment
Treatment is nonspecific since there is no known antidote. If the gag reflex is absent, the airway should be supported. Oxygen, vasopressors and assisted ventilation may be necessary for CNS, respiratory and cardiovascular depression. Haemodialysis can be considered since phenytoin is not completely bound to plasma proteins. Total exchange transfusion has been utilised in the treatment of severe intoxication in children. In acute overdose the possibility of other CNS depressants, including alcohol, should be borne in mind.

In case of overdose, immediately contact the Poisons Information Centre for advice. (In New Zealand call 0800 764 766.)

STORAGE
DBL™ Phenytoin Injection BP should be stored below 25°C and protected from light. Do not use if the solution is hazy or contains a precipitate. The product should be visually inspected for particulate matter and discolouration prior to administration.

MEDICINE CLASSIFICATION
Prescription Medicine
PACKAGE QUANTITIES
DBL™ Phenytoin Injection BP is available as 5 x 2 mL or 5 x 5 mL ampoules, each ampoule containing phenytoin sodium 100 mg and 250 mg respectively.

<table>
<thead>
<tr>
<th>Strength</th>
<th>Pack Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mg/2 mL</td>
<td>5 x 2 mL ampoules</td>
</tr>
<tr>
<td>250 mg/5 mL</td>
<td>5 x 5 mL ampoules</td>
</tr>
</tbody>
</table>

NAME AND ADDRESS
Pfizer New Zealand Limited,
PO Box 3998
Auckland, New Zealand, 1140

Toll Free Number: 0800 736 363

DATE OF PREPARATION
26 April 2017