FENTANYL INJECTION

Fentanyl 50 micrograms/mL injection

Presentation

Fentanyl Injection contains fentanyl 50 micrograms/mL as the citrate. It is a clear, colourless solution and is available in 2 mL and 10 mL clear glass ampoules.

Indications

Fentanyl Injection is indicated for:

- analgesic action of short duration during anaesthetic periods, premedication, induction and maintenance, and in the immediate post-operative period (recovery room) as the need arises;
- use as an opioid analgesic supplement in general and regional anaesthesia;
- administration with a neuroleptic such as droperidol injection as an anaesthetic premedication, for the induction of anaesthesia, and as an adjunct in the maintenance of general and regional anaesthesia.

Dosage and Administration

Dosage should be individualised. Some of the factors to be considered in determining the dose are: age, body weight, physical status, underlying pathological condition, use of other medicines, type of anaesthesia to be used, and the surgical procedure involved.

Usual dosage in adults

1. Premedication (To be appropriately modified in the elderly, debilitated and those who have received other depressant medicines)

 50 to 100 micrograms (1 to 2 mL) may be administered intramuscularly 30 to 60 minutes prior to surgery.

2. Adjunct to general anaesthesia

 Induction- 50 to 100 micrograms (1 to 2 mL) may be administered initially intravenously and may be repeated at 2 to 3 minute intervals until the desired effect is achieved. A reduced dose as low as 25 to 50 micrograms (0.5 to 1 mL) is recommended in elderly and poor-risk patients.
Maintenance - 25 to 50 micrograms (0.5 to 1 mL) may be administered intravenously or intramuscularly when movement and/or changes in vital signs indicate surgical stress or lightening of analgesia.

3. Adjunct to regional anaesthesia
50 to 100 micrograms (1 to 2 mL) may be administered intramuscularly or slowly intravenously when additional analgesia is required.

4. Post-operatively - (Recovery room)
50 to 100 micrograms (1 to 2 mL) may be administered intramuscularly for the control of pain, tachypnoea, and emergence delirium. The dose may be repeated in one or two hours as needed.

Special populations

Elderly and debilitated patients
As with other opioids, the initial dose should be reduced in the elderly (>65 years of age) and in debilitated patients. The effect of the initial dose should be taken into account in determining supplemental doses.

Obese patients
In obese patients there is a risk of overdosing if the dose is calculated based on body weight. Obese patients should be dosed based on estimated lean body mass rather than on body weight only.

Renal impairment
In patients with renal impairment, reduced dosing of Fentanyl Injection should be considered and these patients should be observed carefully for signs of fentanyl toxicity (see Pharmacokinetics).

Paediatrics
For induction and maintenance in children 2-12 years of age, a reduced dose as low as 20 to 30 micrograms (0.4 to 0.6 mL) per 10 kg is recommended (see Warnings and Precautions for use of Fentanyl Injection with other central nervous system (CNS) depressants and in patients with altered response).

Administration
The injectable solution must not be mixed with other products.

Contraindications

Fentanyl Injection is contraindicated in patients with known intolerance to fentanyl, any of the components of Fentanyl Injection or other opioids.

Fentanyl Injection should not be administered to children two years of age or younger, because safe conditions for use have not been established (see Warnings and Precautions – Paediatric use). Fentanyl Injection should not be administered to patients suffering from bronchial asthma. As for any opioid analgesic, it should not be used in patients who may be particularly susceptible to respiratory depression, such as comatose patients, patients who have a head injury or brain tumour (see Warnings and Precautions).
Severe and unpredictable potentiation by monoamine oxidase inhibitors (MAOIs) has been reported with opioid analgesics.

There is no evidence that fentanyl is potentiated by MAOIs but since such potentiation is found with other opioid analgesics, the use of Fentanyl Injection in patients who have received MAOIs within 14 days is not recommended (see Interactions).

Fentanyl Injection may cause thoracic muscle rigidity upon intravenous administration. Therefore, the need for reversal with muscle relaxants contraindicates its use in patients with a history of myasthenia gravis.

Warnings and Precautions

Drug dependence

Fentanyl Injection can produce drug dependence of the morphine type and therefore has the potential for being abused. **Fentanyl Injection may be habit forming.**

Patients on chronic opioid therapy or with a history of opioid abuse may require higher doses.

Hypoventilation (respiratory depression)

Profound analgesia is accompanied by marked respiratory depression, which can persist or recur in the post-operative period. Hyperventilation during anaesthesia may alter the patient's responses to CO₂, thus affecting respiration post-operatively. Therefore, patients should remain under appropriate surveillance.

Fentanyl Injection should be used with caution in patients with severe impairment of pulmonary function because of the possibility of respiratory depression, e.g. patients with chronic obstructive pulmonary disease, patients with decreased respiratory reserve, or any patient with potentially compromised respiration. In such patients, opioids may additionally decrease respiratory drive and increase airway resistance. During anaesthesia, this can be managed by assisted or controlled respiration.

Respiratory depression caused by opioid analgesics can be reversed by opioid antagonists. Appropriate surveillance should be maintained because the duration of respiratory depression of doses of fentanyl employed during anaesthesia may be longer than the duration of opioid antagonist action (See discussion of opioid antagonists in Overdose).

Resuscitative equipment and an opioid antagonist should be readily available to manage apnoea.

Muscle rigidity

Fentanyl Injection may cause muscle rigidity, particularly involving the muscles of respiration. This effect is related to the speed of injection and its incidence can be reduced by a slow intravenous injection (ordinarily sufficient for lower doses), premedication with benzodiazepines and the use of muscle relaxants.

Once the effect occurs, it is managed by the use of assisted or controlled respiration and, if necessary, by a neuromuscular blocking agent compatible with the patient's condition.

Non-epileptic (myo)clonic movements can occur.
Head injuries and increased intracranial pressure

Fentanyl Injection should be used with caution in patients who may be particularly susceptible to respiratory depression, such as comatose patients who may have a head injury or brain tumour. In addition, fentanyl may obscure the clinical course of patients with a head injury.

The use of rapid bolus injections of opioids should be avoided in patients with compromised intracerebral compliance; in such patients the transient decrease in the mean arterial pressure has occasionally been accompanied by a short-lasting reduction of the cerebral perfusion pressure.

Cardiac effects

Fentanyl Injection may produce bradycardia and possibly cardiac arrest if the patient has received an insufficient amount of anticholinergic, or when Fentanyl Injection is combined with non-vagolytic muscle relaxants. Bradycardia may be treated with atropine. However, Fentanyl Injection should be used with caution in patients with cardiac bradyarrhythmias.

Opioids may induce hypotension, especially in hypovolaemic patients. Appropriate measures to maintain a stable arterial pressure should be taken.

Serotonin syndrome

Caution is advised when Fentanyl Injection is co-administered with medicines that affect the serotonergic neurotransmitter systems.

The development of a potentially life-threatening serotonin syndrome may occur with the concomitant use of serotonergic medicines such as Selective Serotonin Re-uptake Inhibitors (SSRIs) and Serotonin Norepinephrine Re-uptake Inhibitors (SNRIs), and with medicines which impair metabolism of serotonin (including MAOIs). This may occur within the recommended dose.

Serotonin syndrome may include mental-status changes (e.g., agitation, hallucinations, coma), autonomic instability (e.g., tachycardia, labile blood pressure, hyperthermia), neuromuscular abnormalities (e.g., hyperreflexia, incoordination, rigidity), and/or gastrointestinal symptoms (e.g., nausea, vomiting, diarrhoea).

If serotonin syndrome is suspected, rapid discontinuation of Fentanyl Injection should be considered.

General

As has been observed with all opioid analgesics, episodes suggestive of sphincter of Oddi spasm may occur with Fentanyl Injection.

Vital signs should be monitored carefully.

Use in the elderly or debilitated patients

It is recommended to reduce the dosage of Fentanyl Injection in the elderly and in debilitated patients. Opioids should be titrated with caution in patients with any of the following conditions: uncontrolled hypothyroidism, pulmonary disease, decreased respiratory reserve, alcoholism, impaired hepatic or renal function. Such patients also require prolonged post-operative monitoring.
Paediatric use
The safety of Fentanyl Injection in children younger than two years of age has not been established.

Use in pregnancy
Category C.
There are no adequate data from the use of Fentanyl Injection in pregnant women. Fentanyl can cross the placenta in early pregnancy. Studies in animals have shown some reproductive toxicity. The potential risk for humans is unknown.

Some tests on female rats showed reduced fertility as well as embryo mortality. These findings were related to maternal toxicity and not a direct effect of the drug on the developing embryo. There was no evidence of teratogenic effects.

Administration (I.M. or I.V.) during childbirth (including caesarean section) is not recommended because fentanyl crosses the placenta and may suppress spontaneous respiration in the newborn period. If fentanyl is administered, assisted ventilation equipment must be immediately available for the mother and infant if required. An opioid antagonist for the child must always be available.

Use in lactation
Fentanyl is excreted into human milk. Therefore, breast-feeding or use of expressed breast milk is not recommended for 24 hours following the administration of this medicine.

The risk/benefit of breast-feeding following Fentanyl Injection administration should be considered.

Effects on ability to drive and use machines
Patients should only drive or operate a machine if sufficient time has elapsed (at least 24 hours) after the administration of Fentanyl Injection.

Other
Carcinogenicity
In a two-year carcinogenicity study conducted in rats, fentanyl was not associated with an increased incidence of tumours at subcutaneous doses up to 33 μg/kg/day in males or 100 μg/kg/day in females, which were the maximum tolerated doses for males and females.

Genotoxicity
In vitro fentanyl showed, like other opioid analgesics, mutagenic effects in a mammalian cell culture assay, only at cytotoxic concentrations and along with metabolic activation. Fentanyl showed no evidence of mutagenicity when tested in in vivo rodent studies and bacterial assays.

Adverse Effects

Clinical trial data
The safety of fentanyl was evaluated in 376 subjects who participated in 20 clinical trials evaluating fentanyl used as an anaesthetic. These subjects took at least one dose of fentanyl
and provided safety data. Adverse Drug Reactions (ADRs), as identified by the investigator, reported for ≥1% of fentanyl-treated subjects in these studies are shown in Table 1.

Table 1. Adverse drug reactions reported by ≥1% of fentanyl-treated subjects in 20 clinical trials of fentanyl

<table>
<thead>
<tr>
<th>System/Organ class</th>
<th>Fentanyl (n=376)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nervous system disorders</td>
<td></td>
</tr>
<tr>
<td>Sedation</td>
<td>5.3%</td>
</tr>
<tr>
<td>Dizziness</td>
<td>3.7%</td>
</tr>
<tr>
<td>Dyskinesia</td>
<td>3.2%</td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
</tr>
<tr>
<td>Visual disturbance</td>
<td>1.9%</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
</tr>
<tr>
<td>Bradycardia</td>
<td>6.1%</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>4.0%</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>2.9%</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
</tr>
<tr>
<td>Hypotension</td>
<td>8.8%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>8.8%</td>
</tr>
<tr>
<td>Vein pain</td>
<td>2.9%</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td></td>
</tr>
<tr>
<td>Apnoea</td>
<td>3.5%</td>
</tr>
<tr>
<td>Bronchospasm</td>
<td>1.3%</td>
</tr>
<tr>
<td>Laryngospasm</td>
<td>1.3%</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>26.1%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>18.6%</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td></td>
</tr>
<tr>
<td>Dermatitis allergic</td>
<td>1.3%</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
</tr>
<tr>
<td>Muscle rigidity (which may also involve the thoracic muscles)</td>
<td>10.4%</td>
</tr>
<tr>
<td>Injury, poisoning and procedural complications</td>
<td></td>
</tr>
<tr>
<td>Confusion postoperative</td>
<td>1.9%</td>
</tr>
<tr>
<td>Anaesthetic complication neurological</td>
<td>1.1%</td>
</tr>
</tbody>
</table>

Additional ADRs that occurred in <1% of fentanyl-treated subjects in the 20 clinical trials are listed below in Table 2.

Table 2. Adverse drug reactions reported by <1% of fentanyl-treated subjects in 20 clinical trials of fentanyl

<table>
<thead>
<tr>
<th>System/Organ class</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychiatric disorders</td>
<td></td>
</tr>
<tr>
<td>Euphoric mood</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
</tr>
<tr>
<td>Blood pressure fluctuation</td>
<td></td>
</tr>
<tr>
<td>Phlebitis</td>
<td></td>
</tr>
</tbody>
</table>
Post-marketing experience

Adverse drug reactions first identified during post-marketing experience with fentanyl are included in Table 3, based on spontaneous reporting rates. The frequencies are provided according to the following convention:

- **Very common**: ≥ 1/10
- **Common**: ≥ 1/100 and < 1/10
- **Uncommon**: ≥ 1/1,000 and < 1/100
- **Rare**: ≥ 1/10,000 and < 1/1,000
- **Very rare**: < 1/10,000, including isolated reports

Table 3: Adverse drug reactions identified during post-marketing experience with fentanyl by frequency category estimated from spontaneous reporting rates

<table>
<thead>
<tr>
<th>Immune system disorders</th>
<th>Very rare: Hypersensitivity (such as anaphylactic shock, anaphylactic reaction, urticaria)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nervous system disorders</td>
<td>Very rare: Convulsions, loss of consciousness, myoclonus</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Very rare: Cardiac arrest (also see Warnings and Precautions)</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Very rare: Respiratory depression (also see Warnings and Precautions)</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Very rare: Pruritus</td>
</tr>
</tbody>
</table>

When a neuroleptic is used with fentanyl, the following adverse reactions may be observed: chills and/or shivering; restlessness, post-operative hallucinatory episodes; and extrapyramidal symptoms (see Interactions).

Interactions

Effects of other medicines on Fentanyl Injection

Medicines such as, CNS depressants, barbiturates, benzodiazepines, neuroleptics, opioids, alcohol and general anaesthetics, may have additive or potentiating effects with Fentanyl Injection.
When patients have received such medicines, the dose of Fentanyl Injection required may be less than usual. Post-operative opioids including Fentanyl Injection and other depressants should be given initially in reduced doses, as low as 1/4 to 1/3 of those usually recommended. As with other opioids, the respiratory depressant effect of Fentanyl Injection persists longer than the measured analgesic effect. The total dose of all opioid analgesics should be considered before ordering opioid analgesics during recovery from anaesthesia.

Certain forms of conduction anaesthesia, such as spinal anaesthesia and some peridural anaesthetics, can alter respiration by blocking intercostal nerves. Through other mechanisms (see Actions) Fentanyl Injection can also alter respiration. Therefore, when Fentanyl Injection is used to supplement these forms of anaesthesia, the anaesthetist should be familiar with the special properties of each medicine (particularly with the widely differing durations of actions), the physiological alterations involved and be prepared to manage them in patients selected for these forms of anaesthesia.

When Fentanyl Injection is used with a neuroleptic such as droperidol, blood pressure may be altered and hypotension can occur. If this occurs, the possibility of hypovolaemia should also be considered and managed with appropriate parenteral fluid therapy. Repositioning the patient improves venous return to the heart and should be considered when operative conditions permit. Care should be exercised in moving and positioning patients because of the possibility of orthostatic hypotension. If volume expansion with fluids together with other countermeasures does not correct hypotension, the administration of pressor agents other than adrenaline should be considered. Because of the alpha-adrenergic blocking action of droperidol, adrenaline may paradoxically decrease the blood pressure in patients treated with droperidol. Pulmonary arterial pressure may also be decreased. This should be considered when interpreting pulmonary arterial pressure measurements as it might determine the final management of the patient.

When droperidol is used with Fentanyl Injection and the electroencephalogram (EEG) is used for post-operative monitoring, it may be found that the EEG pattern returns to normal slowly.

Severe and unpredictable potentiation by MAOIs has been reported with opioids analgesics. Since the safety of fentanyl in this regard has not been established, the use of Fentanyl Injection in patients who have received MAOIs within 14 days is not recommended (see Contraindications).

Co-administration of fentanyl with serotonergic agents, such as SSRIs or SNRIs or MAOIs, may increase the risk of serotonin syndrome, a potentially life-threatening condition.

Fentanyl is metabolised mainly via the human cytochrome P450 3A4 enzyme. It is a high clearance medicine, which is rapidly and extensively metabolised. Oral administration of itraconazole (a potent inhibitor of CYP3A4) at 200 mg/day given for 4 days did not have a statistically significant effect on the pharmacokinetics of IV fentanyl. Co-administration of fluconazole or voriconazole and Fentanyl Injection may result in an increased exposure to fentanyl.

Oral ritonavir (one of the most potent CYP3A4 inhibitors) reduced the clearance of IV fentanyl by two thirds. However, after a single dose of IV fentanyl, the peak plasma concentrations were not affected. When fentanyl is used in a single dose, the concomitant use of potent CYP3A4 inhibitors requires special patient care and observation. When fentanyl is given continuously with these medicines, a reduction in the dose of fentanyl may be required. This will avoid the accumulation of fentanyl and hence reduces the risk of prolonged or delayed respiratory depression.
There are no data on the *in vivo* interactions between fentanyl and other medicines inhibiting CYP3A4 (e.g. ketoconazole, erythromycin, diltiazem and cimetidine).

Effects of Fentanyl Injection on other medicines

Following the administration of Fentanyl Injection, the dose of other CNS-depressant medicines should be reduced.

The total plasma clearance and volume of distribution of etomidate is decreased by a factor of 2 to 3 without a change in half-life when administered with fentanyl. Simultaneous administration of fentanyl and intravenous midazolam results in an increase in the terminal plasma half-life and a reduction in the plasma clearance of midazolam. When these medicines are co-administered with Fentanyl Injection their dose may need to be reduced.

Overdose

Signs and symptoms

The oral LD$_{50}$ for Fentanyl Injection in rats is 18.0 mg/kg. The intravenous LD$_{50}$ is 2.3 mg/kg, and the intramuscular LD$_{50}$ is 1.0 mg/kg in rats. The toxic dose in man is unknown.

The manifestations of Fentanyl Injection overdose are an extension of its pharmacological actions. In sufficient overdosage, fentanyl would produce narcosis, which may be preceded by marked skeletal muscle rigidity. Cardio-respiratory depression, which can vary in severity from bradypnoea to apnoea may occur accompanied by cyanosis, followed by a fall in body temperature, circulatory collapse, coma and death.

Treatment

In the presence of hypoventilation or apnoea, oxygen should be administered and respiration should be assisted or controlled as indicated. A patent airway must be maintained. An oropharyngeal airway or endotracheal tube might be indicated. If depressed respiration is associated with muscular rigidity, an intravenous neuromuscular blocking agent might be required to facilitate assisted or controlled respiration.

A specific opioid antagonist should be available for use as indicated to manage respiratory depression. This does not preclude the use of more immediate countermeasures. The duration of respiratory depression following overdosage of fentanyl may be longer than the duration of opioid antagonist action. Consult the package insert of the individual opioid antagonists for details about use. The patient should be carefully observed for 24 hours. Body warmth and adequate fluid intake should be maintained. If hypotension occurs, and is severe or persists, the possibility of hypovolaemia should be considered and managed with appropriate parenteral fluid therapy.

Further Information

Actions

Fentanyl is a potent opioid analgesic with a rapid onset and short duration of action. The principal actions of therapeutic value are analgesia and sedation. At a dose of 100 micrograms
(2 mL), the analgesic activity of fentanyl is approximately equivalent to 10 mg of morphine or 75 mg of pethidine. Fentanyl differs from morphine by its short duration of analgesic activity, lack of emetic activity, and minimal hypotensive activity.

The action of fentanyl is qualitatively similar to those of morphine and pethidine, i.e. analgesia, euphoria, miosis, bradycardia, respiratory depression, bronchoconstriction, muscle rigidity and suppression of cough reflexes. These effects can be reversed by specific opioid antagonists. As with morphine, fentanyl-induced bradycardia from vagal stimulation is blocked or reversed by atropine. Alterations in respiratory rate and alveolar ventilation, associated with opioid analgesics may last longer than the analgesic effect. As the dose of the opioid is increased, the decrease in pulmonary exchange becomes greater. Larger doses may produce apnoea. The behavioural effects in mice of fentanyl and morphine are similar, and with toxic doses death is due to respiratory depression. The respiratory depressant properties of fentanyl appear to be due to a central effect by decreasing the sensitivity of the respiratory centre to carbon dioxide. In an experiment in cats, no effect on neuromuscular transmission was observed in the presence of severe respiratory depression.

Histamine assays and skin wheal testing have indicated that histamine release rarely occurs with fentanyl. Experiments in dogs, have shown that intravenously administered fentanyl at doses 2-4 times the recommended human dose, had minimal effect on blood pressure and heart rate. Much higher doses of fentanyl citrate, ranging from 100-400 micrograms/kg, produce an immediate fall in blood pressure, followed by partial recovery, and a sustained hypotensive effect lasting up to 30 minutes.

Fentanyl produces a minimum of cortical depression, and it is suggested that it exerts its action by filling receptor sites located in the thalamus, mid-brain, and spinal cord. A specific opioid antagonist, e.g. naloxone, produces reversal of respiratory, cardiovascular, miotic, and motor incoordination effects, as well as analgesia, euphoria, and sedation. Rigidity of the diaphragm and intercostal muscles can be eliminated by succinylcholine. Cholinergic effects, e.g. bradycardia, are reversed by atropine.

Pharmacokinetics

The onset of action of fentanyl is almost immediate when the medicine is given intravenously. However, the maximal analgesic and respiratory depressant effect may not be noted for several minutes. The usual duration of action of analgesic effect is 30 to 60 minutes after a single I.V. dose of up to 100 micrograms. Following intramuscular administration, the onset of action is from 7 to 8 minutes and the duration of action is 1 to 2 hours.

As with longer acting opioid analgesics, the duration of the respiratory depressant effect of fentanyl may be longer than the analgesic effect. The following observations have been reported concerning altered respiratory response to CO₂ stimulation following administration of fentanyl to man:

1. **Diminished sensitivity to CO₂ stimulation may persist longer than depression of respiratory rate.**

 Fentanyl frequently slows the respiratory rate, but this effect is seldom noted for longer than 30 minutes regardless of the dose administered.

2. **Altered sensitivity to CO₂ stimulation has been demonstrated for up to four hours following a single intravenous dose of 600 micrograms (12 mL) fentanyl to healthy volunteers.**
3. Duration and degree of respiratory depression is dose-related.

4. The peak respiratory depressant effect of a single intravenous dose of fentanyl is noted 5 to 15 minutes following injection.

(See also Warnings and Precautions concerning respiratory depression).

Distribution
After intravenous injection, fentanyl plasma concentrations fall rapidly, with sequential distribution half-lives of about 1 minute and 18 minutes and a terminal elimination half-life of 475 minutes. Fentanyl has a V_c (volume of distribution of the central compartment) of 13 L, and a total V_{dss} (distribution volume at steady-state) of 339 L. The plasma-protein binding of fentanyl is about 84% (comprised of plasma protein binding about 43% and red blood cell binding about 40%).

Metabolism
Fentanyl is metabolised primarily in the liver. In humans, in vitro experiments have demonstrated that fentanyl is metabolised mainly by cytochrome P450 3A4 (CYP3A4) to norfentanyl via oxidative N-dealkylation.

Elimination
Approximately 75% of the administered dose is excreted in the urine within 24 hours and only 10% of the dose eliminated in urine is present as unchanged drug.

Special populations

Paediatrics
The plasma protein binding of fentanyl in newborns is approximately 62% which is lower than in adults. The clearance and the volume of distribution are higher in infants and children. This may result in an increased dose requirement for fentanyl.

Renal impairment
Data obtained from a study administering IV fentanyl in patients undergoing renal transplantation suggest that the clearance of fentanyl may be reduced in this patient population. If patients with renal impairment receive fentanyl, they should be observed carefully for signs of fentanyl toxicity and the dose reduced if necessary (see Dosage and Administration).

Adult patients with burns
An increase in clearance up to 44% together with a larger volume of distribution results in lower fentanyl plasma concentration. This may require an increased dose of fentanyl.

Obese patients
An increase in clearance of fentanyl is observed with increased body weight. In patients with a BMI>30, clearance of fentanyl increases by approximately 10% per 10 kg increase of the fat free mass (lean body mass).

Other
Fentanyl Injection contains sodium chloride, sodium hydroxide and water for injections.
Pharmaceutical Precautions

Instructions for handling

If desired, fentanyl may be mixed with sodium chloride or glucose intravenous infusions. Such dilutions are compatible with plastic infusion sets. These should be used within 24 hours of preparation.

Shelf life

3 years when stored at or below 25°C.

Special precautions for storage

Protect from light.

Package Quantities

100 micrograms/2 mL of fentanyl, in cartons of 10 ampoules

500 micrograms/10 mL of fentanyl, in cartons of 10 ampoules

Medicine Schedule

Controlled Drug B3

Sponsor Details

Boucher & Muir (New Zealand) Limited t/a Mercury Pharma (NZ)
39 Anzac Road
Browns Bay
Auckland 0753

Free call no: 0800 565 633

Date of Preparation

05 April 2016