Data Sheet

Cymevene®
Ganciclovir
Powder for intravenous infusion

CAS-82410-32-0

DESCRIPTION

Ganciclovir is a synthetic nucleoside analogue of guanine. Its chemical name is 9-(1,3-dihydroxy-2-propoxymethyl)guanine. Ganciclovir has also been referred to as DHPG. Ganciclovir has a molecular formula of C₉H₁₃N₅O₄ and a molecular weight of 255.2.

Ganciclovir is a polar hydrophilic compound with a solubility of 2.6 mg/mL in water at 25 °C (Hydrated Phase II polymorph) and an n-octanol/water partition coefficient of 0.022. The solubility of ganciclovir is independent of the crystalline phase composition. Ganciclovir has two dissociation constants: pKa₁ = 2.2 and pKa₂ = 9.4.

Ganciclovir, when formulated as monosodium salt in the intravenous (IV) dosage form, is a white to off-white lyophilised powder with the molecular formula of C₉H₁₂N₅NaO₄ (molecular weight is 277.2). The lyophilised powder has an aqueous solubility of greater than 50 mg/mL at 25 °C. At physiological pH, ganciclovir sodium exists as the un-ionized form. CYMEVENE is available as the sterile lyophilised powder containing ganciclovir sodium 543 mg equivalent to ganciclovir 500 mg and sodium 43 mg (2 mEq). There are no excipients. Reconstituted CYMEVENE sterile powder is for IV administration only.

PHARMACOLOGY

Microbiology

Ganciclovir is a synthetic nucleoside analogue of 2-deoxyguanosine that inhibits replication of herpes viruses both in vitro and in vivo. Sensitive human viruses include cytomegalovirus (HCMV), herpes simplex virus-1 and -2 (HSV-1 and HSV-2), herpes virus type -6, -7 and -8 (HHV-6, HHV-7, HHV-8), Epstein-Barr virus (EBV), varicella zoster virus (VZV) and hepatitis B virus. Ganciclovir was less potent against HHV-7 and HHV-8 than HHV-6. In vitro, synergy has been demonstrated between ganciclovir and foscarinet against CMV and herpes simplex virus Types 1 and 2 and between ganciclovir and beta-
interferon against herpes simplex virus Type 2. Ganciclovir has been shown to be active against HCMV in human clinical studies.

A virus-encoded protein kinase homologue, encoded by the CMV gene UL97, has been demonstrated to control phosphorylation of ganciclovir in human CMV-infected cells. The product of the UL97 gene, along with cellular kinases which are induced upon CMV infection, appear to be responsible for phosphorylation of ganciclovir to its active triphosphate. It has been shown that there is as much as a 100-fold greater concentration of ganciclovir-triphosphate in CMV-infected cells than in uninfected cells, indicating a preferential phosphorylation of ganciclovir in virus-infected cells. In vitro, ganciclovir-triphosphate is catabolised slowly, with 60% to 70% of the original level remaining in the infected cells 18 hours after removal of ganciclovir from the extracellular medium. The antiviral activity of ganciclovir-triphosphate is believed to be the result of inhibition of viral DNA synthesis by two known modes: (1) competitive inhibition of viral DNA polymerases (2) direct incorporation into viral DNA, resulting in eventual termination of viral DNA elongation. The cellular DNA polymerase alpha is also inhibited, but at a higher concentration than that required for inhibition of viral DNA polymerase. The median concentration of ganciclovir that inhibits CMV replication (IC$_{50}$) in vitro (laboratory strains or clinical isolates) has ranged from 0.08 to 14 µM (0.02 to 3.5 mcg/mL). Ganciclovir inhibits mammalian cell proliferation (TD$_{50}$) in vitro at higher concentrations ranging from 40 to >1000 µM (10 to >250 mcg/mL). Ganciclovir has been shown to be more toxic in proliferating cells than in confluent, contact-inhibited cells (toxicity of 27 µM GCV in confluent MRC-5 cells = 0%, whereas in proliferating MRC-5 cells = 26 - 44%). Bone marrow-derived colony-forming cells are more sensitive (TD$_{50}$ 2.7 - 12 µM; 0.68 - 3 mcg/mL). The relationship of in vitro sensitivity of CMV to ganciclovir and clinical response has not been established.

Viral Resistance
Emergence of viral resistance was reported in humans with AIDS and CMV retinitis and was associated with clinical failure of ganciclovir treatment. The number of patients with resistant isolates (IC$_{50}$ > 6.0 µM, 1.5 mcg/mL) increased with duration of ganciclovir exposure, was estimated to occur in 3% to 26% of patients after 3 to 9 months of treatment, respectively, and occurred with equal frequency in patients treated with IV and oral medicines. CMV-resistance to ganciclovir is uncommon (~ 1%) in individuals with AIDS and CMV retinitis who have never received ganciclovir therapy. During the first 6 months of treatment for CMV retinitis with IV CYMEVENE, viral resistance (based on urine culture) is detected in 3% to 8% of patients. Most patients with worsening CMV retinitis while on treatment do not shed resistant CMV in urine, but there may be a closer correlation when resistance is evaluated from blood cultures. Viral resistance has also been observed in patients receiving prolonged treatment for CMV retinitis with IV CYMEVENE. The possibility of viral resistance should be considered in patients who demonstrate poor clinical response or persistent viral excretion during therapy.

Cross-Resistance
The principal mechanism of resistance to ganciclovir in CMV is the decreased ability to form the active triphosphate moiety; mutations in the gene encoding UL97 and UL54 enzymes can reduce drug phosphorylation and GCV-TP inhibition of viral polymerase, respectively. Mutations to UL97 are the cause of the majority of ganciclovir resistance and the most common mutation recognised; mutation of UL54 are about one tenth as frequent. Double mutations in both the UL97 and the UL54 genes are significant for being multiple resistant to two or three anti-CMV compounds including cidofovir and foscarnet.

Pharmacokinetics
The pharmacokinetics of IV CYMEVENE are based on limited studies in immunodeficient adult patients with serious cytomegalovirus infection who were also receiving other medicines.

Absorption
The systemic exposure (AUC\(_{0-24}\)) following a single dose of IV ganciclovir (5 mg/kg, 1 h infusion) in HIV+/CMV+ patients is 21.4 ± 3.1 μg.h/mL (n = 16). In this patient population peak plasma concentration (Cmax) is 8.27 ± 1.02 μg/mL. Where as, following a dose of 5 mg/kg/day (n = 16) with IV ganciclovir the AUC\(_{0-24}\) and Cmax were 26.0 ± 6.06 and 9.03 ± 1.42 μg/mL respectively. Most studies indicated that Cmin of ganciclovir (plasma level at 11 h after start of infusion) averaged 0.56 μg/mL.

Distribution
For IV ganciclovir, the volume of distribution is correlated with body weight, with values for the steady state volume of distribution ranging from 0.536 ± 0.078 (n = 15) to 0.870 ± 0.116 (n = 16) L/kg. Cerebrospinal fluid concentrations obtained 0.25 to 5.67 hours postdose in 2 patients who received 2.5 mg/kg ganciclovir IV q8h or q12h ranged from 0.50 to 0.68 mcg/mL, representing 24% to 67% of the respective plasma concentrations. Binding to plasma proteins was 1% to 2% over ganciclovir concentrations of 0.5 and 51 mcg/mL. Therefore, medicine interactions involving binding site displacement are not expected.

Metabolism and Elimination
When administered intravenously, ganciclovir exhibits linear pharmacokinetics over the range of 1.6 to 5.0 mg/kg. Renal excretion of unchanged drug by glomerular filtration and active tubular secretion is the major route of elimination of ganciclovir. In patients with normal renal function, 89.6 ± 5.0% (n = 4) of IV administered ganciclovir was recovered unmetabolised in the urine. Administration of a dose of 5 mg/kg IV ganciclovir as a 1 h infusion in 22 patients with normal renal function demonstrated that, the plasma half life (t\(_{1/2}\)) of ganciclovir averaged 2.9 ± 1.3 h and systemic clearance (Cliv) averaged 3.64 ± 1.86 mL/min/kg. Dose-dependent kinetics of ganciclovir over the dose range 1.6 to 5.0 mg/kg were demonstrated in as much as AUC for ganciclovir increased in proportion to the increase in dose by the systemic clearance and plasma t\(_{1/2}\) values were similar at all dose levels. In this patient population, greater than 90% of ganciclovir is recovered unmetabolised, in urine. Therefore, one would expect the renal status of patients to influence the kinetics of ganciclovir.

Special Populations

Renal Impairment
The pharmacokinetics following IV administration of ganciclovir solution were evaluated in 10 immunocompromised patients with renal impairment who received doses ranging from 1.25 to 5.0 mg/kg (Table 1). Pharmacokinetic analysis in patients with renal impairment indicated that the mean systemic clearance of ganciclovir was progressively reduced and the mean plasma half-life increased with increasing degrees of renal impairment.
Table 1 Ganciclovir pharmacokinetic parameters in patients with impaired renal function

<table>
<thead>
<tr>
<th>Estimated Creatinine Clearance (mL/min)</th>
<th>n</th>
<th>Dose</th>
<th>Clearance (mL/min) Mean ± SD</th>
<th>Half-life (hours) Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 - 79</td>
<td>4</td>
<td>3.2 - 5 mg/kg</td>
<td>128 ± 63</td>
<td>4.6 ± 1.4</td>
</tr>
<tr>
<td>25 - 49</td>
<td>3</td>
<td>3 - 5 mg/kg</td>
<td>57 ± 8</td>
<td>4.4 ± 0.4</td>
</tr>
<tr>
<td><25</td>
<td>3</td>
<td>1.25 - 5 mg/kg</td>
<td>30 ± 13</td>
<td>10.7 ± 5.7</td>
</tr>
</tbody>
</table>

As the major excretion pathway for ganciclovir is renal (glomerular filtration and active tubular secretion), the dosage of the medicine must be reduced according to serum creatinine/creatinine clearance (see DOSAGE AND ADMINISTRATION, Renal Impairment).

Haemodialysis
Limited studies of patients with severe renal impairment have indicated that haemodialysis reduced plasma drug levels by approximately 50%.

During intermittent haemodialysis, estimates for the clearance of ganciclovir ranged from 42 to 92 mL/min, resulting in intra-dialytic half-lives of 3.3 to 4.5 hours. Estimates of ganciclovir clearance for continuous dialysis were lower (4.0 to 29.6 mL/min) but resulted in greater removal of ganciclovir over a dose interval. For intermittent haemodialysis, the fraction of ganciclovir removed in a single dialysis session varied from 50% to 63%.

Children
Ganciclovir pharmacokinetics were studied in 27 neonates (aged 2 to 49 days) after an 1 hour IV infusion of a single dose of 4 mg/kg (n = 14) and 6 mg/kg (n = 13). The mean elimination t1/2 for both dose groups was 2.4 hours. Mean Cmax was 5.5 ± 6 mcg/mL and 7.0 ± 1.6 µg/mL the lower and higher dose levels respectively. Mean values for Vss (0.7 L/kg) and systemic clearance (3.15 ± 0.47 mL/min/kg at 4 mg/kg and 3.55 ± 0.35 mL/min/kg at 6 mg/kg) were comparable to those observed in adults with normal renal function.

Ganciclovir pharmacokinetics were also studied in 10 children with normal renal function, aged 9 months to 12 years. The pharmacokinetic characteristics of ganciclovir were the same after single and multiple (q12h) IV doses (5 mg/kg). Exposure as measured by mean AUC, on days 1 and 14 were 19.4 ± 7.1 and 24.1 ± 14.6 mcg.h/mL respectively and the corresponding Cmax values were 7.59 ± 3.21 (day 1) and 8.31 ± 4.9 mcg/mL (day 14). This range of exposures is comparable to that observed in adults. The steady state volume of distribution after a single dose on day 1 and at the end of the repeat dose period (day 14) was 0.68 ± 0.20 L/kg. Systemic clearance for the same study days was 4.66 ± 1.72 (day 1) and 4.86 ± 2.96 mL/min/kg (day 14). The respective mean values for renal clearance (0 – 12 h) were 3.45 ± 2.40 on day 1 and 3.49 ± 1.19 mL/min/kg on day 14. The corresponding mean values for the half-life were 2.49 ± 0.57 (day 1) and 2.22 ± 0.76 h (day 14). The pharmacokinetics of ganciclovir from this study were consistent with that in neonates and adults.

The pharmacokinetics were also studied in 3 children with impaired renal function administered IV ganciclovir (1.25 mg/kg). The study showed these patients to have a Cmax of 3.66 mcg/mL, AUC 34.75 mcg.h/mL and t1/2 of 7.87 h.

Elderly
No studies have been conducted in adults older than 65 years of age.

Oral ganciclovir
The pharmacokinetics of ganciclovir following oral administration of CYMEVENE capsules have been evaluated in 500 immunocompromised adults. When administered orally ganciclovir exhibits linear kinetics up to a total daily dose of 4 g/day. When single doses of CYMEVENE capsules ranging from 500 mg to 2000 mg were administered to HIV-positive patients under fasting conditions, mean absolute bioavailability was 5.6% and 2.6% with the 500 mg dose and 2000 mg dose respectively. Absolute bioavailability of a single 1000 mg dose administered under fasted conditions in transplant patients was 7.2%. Following oral administration of a single 1000 mg dose of 14C-radiolabelled ganciclovir, 86% of administered ganciclovir was recovered in the faeces as unchanged drug, and 5% was recovered in the urine. No metabolite accounted for more than 1% to 2% of the radioactivity recovered in urine or faeces indicating that orally administered ganciclovir is excreted essentially unchanged.

A meal immediately prior to dosing with CYMEVENE capsules, 1000 mg every 8 hours, increased the mean steady state area under the serum concentration versus time curve (AUC) of ganciclovir by approximately 20%. Multiple dose pharmacokinetic studies were conducted using CYMEVENE capsules. At a dose of 1000 mg administered three times daily with food the mean steady state peak concentration of ganciclovir was 0.98 mcg/mL and the mean steady state morning trough concentration was 0.20 mcg/mL. The steady state AUC_{0-24} for this regimen was 13.0 mcg·hr/mL compared with 26.0 mcg·hr/mL for a single ganciclovir IV solution dose of 5 mg/kg (the standard maintenance regimen for treatment of CMV retinitis). The mean plasma t_{1/2} was 5.03 hours. The absolute bioavailability of multiple dose regimens of ganciclovir administered orally in doses of 3000 mg to 6000 mg daily in fed patients was approximately 6%.

CLINICAL TRIALS

1. **Intravenous CYMEVENE in CMV Retinitis**

The diagnosis of CMV retinitis should be made by indirect ophthalmoscopy. Other conditions in the differential diagnosis of CMV retinitis included candidiasis, toxoplasmosis, histoplasmosis, retinal scars, cotton wool spots, any of which may produce a retinal appearance similar to CMV. For this reason it is essential that the diagnosis of CMV be established by an ophthalmologist familiar with the presentation of these conditions. The diagnosis of CMV retinitis may be supported by culture of CMV in the urine, blood, throat, or other sites, but a negative culture does not rule out CMV retinitis.

Patients enrolled in the three controlled CYMEVENE IV/oral maintenance studies were 22 to 62 years of age with median baseline CD4 counts of 7.0 to 10.0 (range 0 to 320); the majority of patients were male (93 to 99%) and Caucasian (81 to 88%). Mean observation times for the three studies were from 42.5 to 47.0 days. The results of one of these studies is presented below (see ICM 1653).

ICM 1653: In this randomised, open label, parallel group trial, conducted between March 1991 and November 1992, patients with AIDS and newly diagnosed CMV retinitis received a 3-week induction course of CYMEVENE solution, 5 mg/kg bd for 14 days followed by 5 mg/kg once daily for one additional week. Following the 21-day IV induction course, patients with stable CMV retinitis were randomised to receive 20 weeks of maintenance induction treatment with either CYMEVENE solution, 5 mg/kg once daily or CYMEVENE capsules 500 mg six times daily. The study showed that mean (95% CI) times to progression of CMV retinitis, as assessed by masked reading of fundus photographs was 57 days (44, 70) for patients on oral therapy compared to 62 days (50, 73) for patients on IV therapy. The difference (95% CI) in the mean time to progression between the oral and intravenous therapies (oral-IV) was -5 days (-22, 12). See Figure 1 for comparison of the proportion of patients remaining free of progression over time.
2. Intravenous CYMEVENE for Prophylaxis of CMV Disease in Heart and Bone Marrow Transplantation

ICM 1496: In a randomised, double blind, placebo-controlled study of the prophylaxis of tissue-invasive CMV in heart transplant patients who had asymptomatic infection or were receiving CMV seropositive organs, 149 patients aged 13 to 68 were enrolled (placebo n = 73 and ganciclovir n = 76) with the primary efficacy measure being CMV illness (defined as biopsy-proven CMV disease, CMV retinitis and/or CMV syndrome). Patients received placebo or ganciclovir 5 mg/kg every 12 hours for 14 days followed by 6 mg/kg once daily 5 days per week for 2 weeks (until day 25) whereupon CMV prophylaxis was discontinued and patients monitored until day 120 post-transplant. Doses were modified for renal function. Thirty-one of 73 placebo vs. 12 of 76 ganciclovir patients developed CMV illness (42.5 vs. 15.8%, p = 0.0004). Additionally, the time from transplant to CMV illness was significantly longer in the ganciclovir group (p = 0.0001). A sustained antiviral effect was demonstrated by a significant difference in the incidence of positive CMV cultures at day 15 post-transplant (16.4 vs. 2.7%, p = 0.005) and continuing through days 29 and 60 (43.1 vs. 4.5%, p < 0.001; 56.4 vs. 19%, p < 0.001). The incidence of adverse events was similar in the two arms.

<table>
<thead>
<tr>
<th>Donor (D) /Recipient (R) CMV status</th>
<th>Ganciclovir % (n)</th>
<th>Placebo % (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMV disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D+/R-</td>
<td>35.0 (7)</td>
<td>29.4 (5)</td>
</tr>
<tr>
<td>D+/R+</td>
<td>8.9 (5)</td>
<td>46.4 (26)</td>
</tr>
<tr>
<td>Total</td>
<td>15.8 (12)</td>
<td>42.5 (31)</td>
</tr>
</tbody>
</table>
ICM 1689: In a randomised, double blind, placebo-controlled study of the prophylaxis of tissue-invasive CMV in bone marrow transplant patients with asymptomatic infection, 72 patients aged 3 to 56 were enrolled (placebo \(n = 35 \), ganciclovir \(n = 37 \)), with the primary efficacy endpoint being progression to life-threatening, biopsy-confirmed, tissue-invasive disease. Patients received placebo or ganciclovir 5 mg/kg twice daily for 7 days, followed by 5 mg/kg once daily until day 100 post-transplant (adjusted for renal function). The study was terminated after a planned interim analysis of 58 patients demonstrated a statistically significant decrease in CMV disease in the ganciclovir group. At day 100, 15 of 35 placebo patients vs. 1 of 37 ganciclovir patients had developed CMV disease (42.9 vs. 2.7%, \(p = 0.00005 \)). Additionally, there was a significant reduction in deaths from any cause in the ganciclovir arm (37.1 vs. 10.8%, \(p = 0.0096 \)); none of the deaths in patients treated with ganciclovir occurred during the period in which the medicine was given. The time from transplant to CMV-related deaths was also significantly longer in the ganciclovir group (\(p = 0.0048 \)). The significant difference in the incidence of CMV disease was maintained at 6 months after transplant, after prophylaxis had been ceased (42.9 vs. 16.2%, \(p = 0.013 \)). The overall incidence of adverse events was similar, however more patients in the ganciclovir arm experienced absolute neutrophil counts below \(1 \times 10^9/L \), often requiring dose modification.

3. Oral CYMEVENE for Prophylaxis of CMV Disease in Liver Transplantation

In a multicentre, double-blind, randomised, placebo-controlled study of the efficacy and safety of ganciclovir capsules 3 g/day in the prevention of CMV disease in liver transplantation, prophylaxis was initiated within 10 days of transplantation in 304 patients and continued through week 14 after transplantation. The primary efficacy parameter was the prevention of CMV disease. The patients were also assessed for the incidence of CMV infection, other herpes virus infections, opportunistic infections, graft rejection and/or loss and patient survival. CMV disease was defined as one of the following: CMV syndrome (spiking fever with no response to antibiotics, malaise and/or fall in neutrophil counts over three consecutive daily measurements and with other causes excluded); CMV hepatitis, gastroenteritis, oesophagitis or colitis (confirmed by biopsy and other criteria); CMV pneumonia (confirmed with lavage and other criteria); CMV retinitis (by dilated fundus examination); or CMV encephalitis (by examination of cerebrospinal fluid). CMV infection was defined as one or more of the following: (1) CMV antigen detected in leukocytes; (2) a positive CMV culture obtained from any site in the body; and/or (3) seroconversion demonstrated by the appearance of IgG or IgM antibodies in a patient previously known to be seronegative.

In all, 19.5% of the placebo group vs. 4.8% of the ganciclovir group developed CMV disease (\(p < 0.001 \)) and 9.8% vs. 0.7% developed tissue-invasive CMV disease by the 6-month timepoint. These reductions were observed irrespective of the recipient's gender, age, immunosuppression as well as whether the patient received antilymphocyte antibodies for induction of immunosuppression and/or the treatment of rejection. The time from transplant to first CMV infection was significantly increased in the ganciclovir group; 48.8% of the placebo vs. 11.4% of the ganciclovir group had developed infection by day 98 post-transplant. Severe adverse events were reported equally in the two groups. 97% of patients in the placebo arm and 94% in the ganciclovir arm maintained absolute neutrophil counts \(\geq 1 \times 10^9/L \).
Table 3: Summary of Kaplan Meier estimates and absolute incidences of study endpoints

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Ganciclovir 1000 mg q8h p.o.</th>
<th>Placebo</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 150</td>
<td>n = 154</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>CMV Disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syndrome</td>
<td>4.8</td>
<td>19.5</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>4.1</td>
<td>12.4</td>
<td>0.008</td>
</tr>
<tr>
<td>Gastroenteritis, oesophagitis</td>
<td>0.7</td>
<td>7.2</td>
<td>0.004</td>
</tr>
<tr>
<td>or colitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung involvement (pneumonia)</td>
<td>0.0</td>
<td>2.6</td>
<td>0.046</td>
</tr>
<tr>
<td>CMV tissue invasive disease</td>
<td>0.7</td>
<td>9.8</td>
<td>< 0.001</td>
</tr>
<tr>
<td>CMV infection</td>
<td>24.5</td>
<td>51.5</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Herpes simplex infections</td>
<td>3.5</td>
<td>23.5</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Other opportunistic infections*</td>
<td>3.3</td>
<td>5.8</td>
<td>NS</td>
</tr>
<tr>
<td>Death (all causes)</td>
<td>3.4</td>
<td>5.8</td>
<td>NS</td>
</tr>
</tbody>
</table>

* absolute incidence – all other figures are Kaplan-Meier six month estimates

Table 4: CMV disease according to Donor/Recipient (D/R) CMV serological status

<table>
<thead>
<tr>
<th>Donor (D) /Recipient (R) CMV status (6-month Kaplan-Meier Estimates)</th>
<th>Ganciclovir % (no. of patients with an event/no. at risk)</th>
<th>Placebo % (no. of patients with an event/no. at risk)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMV disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D+/R-</td>
<td>14.8 (3/21)</td>
<td>44 (11/25)</td>
<td>0.019</td>
</tr>
<tr>
<td>D+/R+</td>
<td>2.7 (2/76)</td>
<td>19.5 (15/77)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>D-/R+</td>
<td>3.9 (2/52)</td>
<td>7.9 (4/51)</td>
<td>NS</td>
</tr>
<tr>
<td>CMV tissue invasive disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D+/R-</td>
<td>0 (0/21)</td>
<td>24.7 (6/25)</td>
<td>0.016</td>
</tr>
<tr>
<td>D+/R+</td>
<td>0 (0/76)</td>
<td>9.1 (7/77)</td>
<td>0.007</td>
</tr>
<tr>
<td>D-/R+</td>
<td>1.9 (1/52)</td>
<td>4.0 (2/51)</td>
<td>NS</td>
</tr>
</tbody>
</table>

INDICATIONS

CYMEVENE (ganciclovir) administered as the IV infusion is indicated for the palliative treatment of confirmed sight-threatening cytomegalovirus (CMV) disease in AIDS and other severely immunocompromised individuals. It is indicated for the treatment of confirmed CMV pneumonitis in bone marrow transplant patients. It is also indicated for the prophylaxis of CMV infection and disease following bone marrow and solid organ transplantation in patients at risk of CMV disease.

NOTE: CYMEVENE (ganciclovir) is not indicated for congenital or neonatal CMV disease; nor for the treatment of CMV infection in non-immunocompromised individuals.

CONTRAINDICATIONS

CYMEVENE is contraindicated in pregnant women, nursing mothers, and in patients who are hypersensitive to ganciclovir, valganciclovir, acyclovir or valacyclovir. A cross-hypersensitivity reaction between these medicines is possible.

CYMEVENE should not be administered to patients if the absolute neutrophil count falls below 0.5 x 10^9/L (500 cells/µL) or platelet count below 2.5 x 10^10/L (25,000/µL) or the haemoglobin is less than 80 g/L (8 g/dL).

The safety and efficacy of CYMEVENE have not been evaluated for prophylaxis of CMV disease in donor negative/receptor negative (D-/R-) transplant patients, or in populations other than those stated under INDICATIONS.

PRECAUTIONS

The main clinical toxicities of ganciclovir include leucopenia, anaemia and thrombocytopenia.

In animal studies ganciclovir was found to be mutagenic, teratogenic, aspermatogenic and carcinogenic. CYMEVENE should therefore be considered a potential teratogen and carcinogen in humans with the potential to cause birth defects and cancers (see PRECAUTIONS, Carcinogenicity and Genotoxicity and DOSAGE AND ADMINISTRATION, Handling and Disposal). It is also considered likely that CYMEVENE causes temporary or permanent inhibition of spermatogenesis (see PRECAUTIONS, Effects on Fertility and Use in Pregnancy and ADVERSE EFFECTS).

CYMEVENE is only indicated in those patients as outlined under the INDICATIONS section where the potential benefits to the patient outweigh the risks stated herein. It is recommended that complete blood counts and platelet counts be monitored during therapy.

The diagnosis of CMV retinitis should be made by indirect ophthalmoscopy. Other conditions in the differential diagnosis of CMV retinitis included candidiasis, toxoplasmosis, histoplasmosis, retinal scars, cotton wool spots, any of which may produce a retinal appearance similar to CMV. For this reason it is essential that the diagnosis of CMV be established by an ophthalmologist familiar with the presentation of these conditions. The diagnosis of CMV retinitis may be supported by culture of CMV in the urine, blood, throat, or other sites, but a negative culture does not rule out CMV retinitis.

HIV+ Patients with CMV Retinitis: Ganciclovir is not a cure for CMV retinitis, and immunocompromised patients may continue to experience progression of retinitis during or following treatment. Patients should be advised to have ophthalmologic follow-up examinations at a minimum of every 4 to 6 weeks while being treated with CYMEVENE. Some patients will require more frequent follow-up.

Haematologic

Severe leucopenia, neutropenia, anaemia, thrombocytopenia, pancytopenia, bone marrow depression and aplastic anaemia have been observed in patients treated with CYMEVENE (see PRECAUTIONS, Laboratory Testing, ADVERSE EFFECTS and DOSAGE AND ADMINISTRATION).

CYMEVENE should, therefore, be used with caution in patients with pre-existing cytopenias, or who have received or are receiving myelosuppressive medicines or irradiation. Cytopenia may occur at any time during treatment and may increase with continued dosing. Cell counts usually begin to recover
within 3 to 7 days of discontinuing the medicine. Colony-stimulating factors have been shown to increase neutrophil counts in patients receiving ganciclovir for treatment of CMV retinitis. **Neutropenia.** Patients receiving ganciclovir have manifested neutropenia (neutrophil count < 1 x 10⁹/L). Data from treatment with IV CYMEVENE indicates neutropenia typically occurs during the first or second week of induction therapy and prior to administration of a total cumulative dose of 200 mg/kg, but may occur at any time during treatment. With IV therapy neutropenia has occurred in up to 40% of patients. Evidence of recovery of cell counts usually occurs within 3 to 7 days after either discontinuing the medicine or decreasing the dosage. The risk of neutropenia may not necessarily be predicted from pre-treatment cell counts. CYMEVENE should not be administered if the absolute neutrophil count is below 0.5 x 10⁹/L.

Thrombocytopenia. Thrombocytopenia (platelet count < 5.0 x 10¹⁰/L) has been observed in patients treated with ganciclovir. Data from studies of IV CYMEVENE indicates that patients with initial platelet counts < 1.0 x 10¹¹/L appear to be at increased risk of this toxicity. CYMEVENE should not be initiated if the absolute platelet count is < 2.5 x 10¹⁰/L.

Anaemia. Anaemia (haemoglobin < 95 g/L) has been observed in patients treated with ganciclovir. CYMEVENE should not be administered if the haemoglobin is < 80 g/L.

Bone Marrow Transplantation
CYMEVENE should not be administered to bone marrow transplant patients in the early post-transplant phase, but withheld until early signs of haemopoetic recovery are evident, usually at about three weeks post-transplantation.

Effects on Ability to Drive and Use Machines
Convulsions, sedation, dizziness, ataxia, confusion and/or coma may occur in patients taking CYMEVENE. If they occur, such effects may affect tasks requiring alertness including the patient’s ability to drive and operate machinery.

Intravenous Administration
In clinical studies with CYMEVENE, the maximum dose studied has been 6 mg/kg given by IV infusion over a period of one hour. It is likely that larger doses, or more rapid infusions, could result in increased toxicity, and therefore, it is recommended that the dosage regimen be strictly adhered to. Administration of CYMEVENE by IV infusion should be accompanied by adequate hydration, since ganciclovir is excreted by the kidneys and normal clearance depends upon adequate renal function. If renal function is impaired, dosage adjustments based on serum creatinine/creatinine clearance, are required (see DOSAGE AND ADMINISTRATION).

CYMEVENE solutions have a high pH (range 9 to 11) and may cause phlebitis and/or pain at the site of IV infusion. Care must be taken to infuse CYMEVENE solutions only into veins with adequate blood flow to afford rapid dilution and distribution.

Use in Patients with Renal Impairment
CYMEVENE should be used with caution in patients with impaired renal function. Both the plasma half-life of ganciclovir as well as peak plasma levels are increased in patients with elevated serum creatinine levels. In a very small number of patients who were undergoing dialysis, ganciclovir plasma levels were reduced by approximately 50% following haemodialysis. In patients with impaired renal function, dosage adjustments based on creatinine clearance are required (see DOSAGE AND ADMINISTRATION, Renal Impairment). Serum creatinine/creatinine clearance should be monitored at least once every two weeks.

Paediatric Use
There has been very limited clinical experience in treating life- or sight-threatening cytomegalovirus disease with CYMEVENE in patients under the age of 12 years. The use of ganciclovir in children warrants extreme caution due to the probability of long-term carcinogenicity and reproductive toxicity.
Administration to children should be undertaken only after careful evaluation and only if, in the opinion of the physician, the potential benefits of treatment outweigh these considerable risks. CYMEVENE is not indicated for the treatment of congenital or neonatal CMV infection.

Use in the Elderly
No studies on the efficacy or safety of CYMEVENE have been conducted specifically in elderly patients. Since elderly individuals may have reduced renal function, CYMEVENE should be administered to the elderly patients with care and with special consideration of their renal status (see PRECAUTIONS, Renal Impairment, and DOSAGE AND ADMINISTRATION, Renal Impairment).

Carcinogenicity and Genotoxicity
In animal studies ganciclovir was found to be mutagenic, teratogenic, aspermatogenic and carcinogenic. CYMEVENE should therefore be considered a potential teratogen and carcinogen in humans with the potential to cause birth defects and cancers (see PRECAUTIONS, Carcinogenicity and Genotoxicity and DOSAGE AND ADMINISTRATION, Handling and Disposal). It is also considered likely that CYMEVENE causes temporary or permanent inhibition of spermatogenesis (see PRECAUTIONS, Effects on Fertility and Use in Pregnancy and ADVERSE EFFECTS).

In an 18-month study, ganciclovir was carcinogenic in the mouse after oral doses of 20 mg/kg/day and 1000 mg/kg/day. All ganciclovir-induced tumours were of epithelial or vascular origin, except for histiocytic sarcoma of the liver. Epithelial tumours involved a wide variety of tissues. No carcinogenic effects occurred at 1 mg/kg/day. Based on data on plasma drug concentrations, exposure of humans to ganciclovir would be greater than exposure of mice in the above study at 20 mg/kg. Thus, CYMEVENE should be considered a potential carcinogen in humans.

Ganciclovir caused point mutations and chromosomal damage in mammalian cells *in vitro* and *in vivo*. Ganciclovir was clastogenic in the mouse micronucleus assay. Ganciclovir was not mutagenic in the Ames Salmonella assay.

Effects on Fertility
Female mice exhibited decreased fertility, decreased mating behaviour and increased embryolethality after daily IV doses of 90 mg/kg. Daily IV doses of up to 20 mg/kg did not impair female fertility but doses as low as 5 mg/kg caused reduction in the birth weights of pups; higher doses were associated with hypoplasia of testes and seminal vesicles in male pups.

In male mice, fertility was decreased after daily IV doses of 2 mg/kg. These effects were reversible after daily IV doses of 2 mg/kg, but were irreversible or incompletely reversible after daily IV doses of 10 mg/kg. Ganciclovir has also caused hypospermatogenesis in dogs after daily IV doses of ≥ 0.4 mg/kg.

Animal data indicate that administration of ganciclovir causes inhibition of spermatogenesis and subsequent infertility in males. These effects were reversible at lower doses but irreversible at higher doses. Animal data also indicate that suppression of fertility in females may occur. No human data are available in this regard but it is considered probable that such effects will occur in humans. Although clinical data have not been obtained to support these animal findings, it is considered likely that CYMEVENE in the recommended doses will result in temporary or permanent inhibition of spermatogenesis. Permanent suppression of fertility in women may occur.

Because of the mutagenic potential of ganciclovir, women of childbearing potential should be advised to use an effective method of contraception during treatment. Men should be advised to practise a barrier method of contraception during and for at least 90 days following treatment with CYMEVENE.

Use in Pregnancy - Category D
CYMEVENE may be teratogenic and/or embryotoxic at the dose levels recommended for human use. There have been no studies of CYMEVENE in pregnant women. CYMEVENE should not be given to pregnant women as there is a high likelihood of damage to the developing foetus.
Data obtained using an *ex vivo* human placental model show that ganciclovir crosses the placenta and that simple diffusion is the most likely mechanism of transfer. The transfer was not saturable over a concentration range of 1 to 10 mcg/mL and occurred by passive diffusion.

Ganciclovir has been shown to be embryotoxic in rabbits and mice following IV administration, and teratogenic in rabbits. Foetal resorptions were present in at least 85% of rabbits and mice administered 60 mg/kg/day and 108 mg/kg/day, respectively (doses approximately equivalent to the recommended human dose – calculated on the basis of body surface area).

Daily IV doses of ganciclovir of 90 mg/kg administered to female mice prior to mating, during gestation, and during lactation caused hypoplasia of the testes and seminal vesicles in month-old offspring, as well as pathologic changes in the nonglandular region of the stomach. The drug exposure in mice as estimated by the AUC was approximately 1.6x the human AUC.

Use in Lactation

It is not known if CYMEVENE is excreted in human or animal milk. Since many medicines are, and because of the potential for serious adverse reactions from ganciclovir in nursing infants, CYMEVENE should not be given to breastfeeding mothers. Alternatively, mothers should be instructed to discontinue nursing if they are receiving CYMEVENE. The minimum time interval before breastfeeding can safely be resumed after the last dose of CYMEVENE is unknown.

Interactions with Other Medicines

The binding of ganciclovir to plasma proteins is 1% to 2%. Therefore, medicine interactions involving binding site displacement are not expected.

Imipenem-cilastatin

Generalised seizures have been reported in patients receiving ganciclovir and imipenem-cilastatin, therefore, such a combination should be avoided (see PRECAUTIONS).

Probenecid

At an oral dose of 1 g of CYMEVENE every 8 hours \((n = 11)\), ganciclovir AUC\(_{0-8}\) increased 40% (95% CI: 6 - 85%) in the presence of probenecid, 500 mg every 6 hours. The increase in AUC\(_{0-8}\) was accompanied by a decrease in renal clearance of ganciclovir by 20%. These changes were consistent with a mechanism of interaction involving competition for renal tubular excretion. Therefore, patients taking probenecid and CYMEVENE should be closely monitored for ganciclovir toxicity. Consideration should also be given to other such medicines which inhibit renal tubular secretion, as these medicines may reduce renal clearance of CYMEVENE and thereby increase the plasma half-life of CYMEVENE.

Zidovudine

When zidovudine was given in the presence of oral ganciclovir, there was a small (17%), but statistically significant, increase in the AUC of zidovudine. There was also a trend towards lower ganciclovir concentrations when administered with zidovudine, although this was not statistically significant. Since both zidovudine and ganciclovir can cause neutropenia and anaemia, patients receiving these medicines concomitantly are at an increased risk of developing these conditions. Regular haematological monitoring should be performed and dose adjustment may be required.

Didanosine

Increases in the AUC of didanosine ranging from 84 to 124% have been observed, if given concomitantly with ganciclovir (both oral and IV). At IV doses of 5 and 10 mg/kg/day ganciclovir, an increase in AUC of didanosine ranging from 38 to 67% was observed. This increase cannot be explained by competition for renal tubular secretion, as there was an increase in the percentage of didanosine dose excreted. This increase could arise from either increased bioavailability or decreased metabolism. Consequently, patients should be monitored closely for didanosine toxicity, including
pancreatitis (see ADVERSE EFFECTS). If didanosine is given two hours prior to ganciclovir a 23% increase in the AUC of ganciclovir occurs. There is no effect on the AUC of ganciclovir if the two medicines are given at the same time.

Mycophenolate mofetil

Based on the results of a single dose administration study of recommended doses of oral mycophenolate mofetil (MMF) and IV ganciclovir and the known effects of renal impairment on the pharmacokinetics of MMF and ganciclovir, it is anticipated that co-administration of these agents (which have the potential to compete for renal tubular secretion) will result in increases in phenolic glucuronide of mycophenolic acid (MPAG) and ganciclovir concentration. No substantial alteration of mycophenolic acid (MPA) pharmacokinetics is anticipated and MMF dose adjustment is not required. In patients with renal impairment in which mycophenolate mofetil and ganciclovir are co-administered, the dose recommendation of ganciclovir should be observed and patients monitored carefully.

Zalcitabine

Zalcitabine increased the AUC₀–₈ of oral ganciclovir by 13%. There were no statistically significant changes in any of the other pharmacokinetic parameters assessed. Additionally, there were no clinically relevant changes in zalcitabine pharmacokinetics in the presence of oral ganciclovir although a small increase in the elimination rate constant was observed.

Stavudine

No statistically significant pharmacokinetic interaction was observed when stavudine and oral ganciclovir were given in combination.

Trimethoprim

Trimethoprim statistically significantly decreased the renal clearance of oral ganciclovir by 16.3% and this was associated with a statistically significant decrease in the terminal elimination rate and corresponding increase in half-life by 15%. However, these changes are unlikely to be clinically significant, as AUC₀–₈ and Cₘₐₓ were unaffected. The only statistically significant change in trimethoprim pharmacokinetic parameters when co-administered with ganciclovir was an increase in Cₘᵟᵢₙ. However, this is unlikely to be of clinical significance and no dose adjustment is recommended.

Cyclosporin

There was no evidence that introduction of ganciclovir affects the pharmacokinetics of cyclosporin based on the comparison of cyclosporin trough concentrations. However, there was a 27.3% increase in the maximum serum creatinine value observed following initiation of ganciclovir therapy. A retrospective analysis of 93 liver transplant recipients receiving IV ganciclovir and oral cyclosporin showed no evidence of an effect on cyclosporin whole blood concentrations.

Other

Possible additive toxicity can occur with other medicines known to be myelosuppressive or associated with renal impairment such as dapsone, pentamidine, flucytosine, vincristine, vinblastine, Adriamycin, amphotericin B, trimethoprim/sulphonamides, other nucleoside analogues and hydroxyurea.

Effect on Laboratory Tests

Due to the frequency of neutropenia, leucopenia, anaemia or thrombocytopenia observed in patients receiving CYMEVENE, it is recommended that complete blood counts and platelet counts be performed frequently, especially in patients in whom ganciclovir or other nucleoside analogues have previously resulted in leucopenia, or in whom neutrophil counts are < 1.0 x 10⁹/L at the beginning of treatment. In patients with severe leucopenia, neutropenia, anaemia and/or thrombocytopenia, it is
recommended that treatment with haematopoietic growth factors and/or dose interruption be considered. Because dosing with CYMEVENE should be modified in patients with renal impairment, patients should have serum creatinine or creatinine clearance values followed carefully.

ADVERSE EFFECTS

Clinical Trial Data

Experience with intravenous ganciclovir

HIV-infected patients

The safety of IV ganciclovir in AIDS patients was studied in several clinical trials. The pooled safety information of the use of IV ganciclovir in six clinical trials is displayed below in comparison to the control arm (oral placebo plus intravitreal ganciclovir implant) of one of these studies. Clinical adverse events, which occurred in more than 2% of patients taking ganciclovir intravenously, regardless of causal relationship or seriousness, but which occurred in a higher frequency in the IV ganciclovir arm compared to the control arm, are summarized in Table 5. Injection site reactions occurred more frequently in patients taking IV ganciclovir than in the control group.
Table 5: Percentage of HIV infected patients with adverse events occurring at a frequency of equal to or greater than 2% of all patients

<table>
<thead>
<tr>
<th>Body system</th>
<th>Intravenous ganciclovir</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$n=412$</td>
<td>$n=119$</td>
</tr>
<tr>
<td>Haemic and lymphatic system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutropenia</td>
<td>25.7%</td>
<td>11.8%</td>
</tr>
<tr>
<td>Anaemia</td>
<td>19.7%</td>
<td>16.8%</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>6.6%</td>
<td>5.0%</td>
</tr>
<tr>
<td>Leucopenia</td>
<td>3.2%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Lymphadenopathy</td>
<td>2.9%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Gastrointestinal system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>26.5%</td>
<td>24.4%</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>9.0%</td>
<td>7.6%</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>2.7%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Oesophageal candidiasis</td>
<td>2.2%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Body as a whole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrexia</td>
<td>35.9%</td>
<td>35.3%</td>
</tr>
<tr>
<td>Candida</td>
<td>10.4%</td>
<td>4.2%</td>
</tr>
<tr>
<td>Injection site infection</td>
<td>8.0%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Sepsis</td>
<td>6.1%</td>
<td>3.4%</td>
</tr>
<tr>
<td>Sepsis secondary</td>
<td>5.8%</td>
<td>—</td>
</tr>
<tr>
<td>Anorexia</td>
<td>4.9%</td>
<td>—</td>
</tr>
<tr>
<td>Mycobacterium avium complex</td>
<td>4.9%</td>
<td>4.2%</td>
</tr>
<tr>
<td>Pain</td>
<td>4.6%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Chest pain</td>
<td>4.4%</td>
<td>3.4%</td>
</tr>
<tr>
<td>Blood culture positive</td>
<td>3.2%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Injection site inflammation</td>
<td>2.2%</td>
<td>—</td>
</tr>
<tr>
<td>Central and peripheral nervous system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypoesthes</td>
<td>3.2%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Anxiety</td>
<td>2.4%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Skin and appendages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pruritus</td>
<td>3.2%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Respiratory system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cough</td>
<td>16.0%</td>
<td>15.1%</td>
</tr>
<tr>
<td>Pneumocystis carinii pneumonia</td>
<td>7.3%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Productive cough</td>
<td>3.6%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Sinus congestion</td>
<td>3.4%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Metabolic and nutritional disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood alkaline phosphatase increased</td>
<td>4.4%</td>
<td>4.2%</td>
</tr>
<tr>
<td>Blood creatinine increased</td>
<td>3.2%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Musculoskeletal system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthralgia</td>
<td>2.4%</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

The control ($n=119$) group includes data from treatment of CMV retinitis and prevention of CMV disease in people with CMV seropositivity or culture positivity.

Laboratory abnormalities in HIV-infected patients
Laboratory abnormalities reported from three clinical trials in HIV-infected patients receiving IV ganciclovir as maintenance treatment for CMV retinitis are listed below in Table 6. One hundred seventy-nine patients were eligible for the laboratory abnormality analysis.

Table 6: Laboratory abnormalities in HIV infected patients

<table>
<thead>
<tr>
<th>Laboratory abnormalities</th>
<th>n = 179</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia (absolute neutrophil count/mm³)</td>
<td></td>
</tr>
<tr>
<td>< 500</td>
<td>25.1%</td>
</tr>
<tr>
<td>500 – < 750</td>
<td>14.3%</td>
</tr>
<tr>
<td>750 – < 1000</td>
<td>26.3%</td>
</tr>
<tr>
<td>Anaemia (haemoglobin g/dL)</td>
<td></td>
</tr>
<tr>
<td>< 6.5</td>
<td>4.6%</td>
</tr>
<tr>
<td>6.5 – < 8.0</td>
<td>16.0%</td>
</tr>
<tr>
<td>8.0 – < 9.5</td>
<td>25.7%</td>
</tr>
<tr>
<td>Thrombocytopenia (platelets/mm³)</td>
<td></td>
</tr>
<tr>
<td>< 25000</td>
<td>2.9%</td>
</tr>
<tr>
<td>25000 – < 50000</td>
<td>5.1%</td>
</tr>
<tr>
<td>50000 – < 100000</td>
<td>22.9%</td>
</tr>
<tr>
<td>Serum creatinine (mg/dL)</td>
<td></td>
</tr>
<tr>
<td>> 2.5</td>
<td>1.7%</td>
</tr>
<tr>
<td>> 1.5 – 2.5</td>
<td>13.9%</td>
</tr>
</tbody>
</table>

Transplant patients

Several clinical trials have investigated IV ganciclovir for the treatment or prevention of CMV disease in transplant patients.

Clinical adverse events, which occurred in equal to or more than 5% of patients taking IV ganciclovir in three pooled bone marrow studies, regardless of causal relationship or seriousness, are summarised in Table 7. Adverse events which occurred in a higher frequency in the placebo/observational control arm compared to the IV ganciclovir arm, have not been included in Table 7 below.

Table 7: Percentage of patients with adverse event occurring at a frequency of equal to or greater than 5% of all patients

<table>
<thead>
<tr>
<th>Body system</th>
<th>Bone marrow transplant patients (ICM 1308, 1570 and 1689)</th>
<th>Intravenous ganciclovir (n = 122)</th>
<th>Placebo/observational control (n = 120)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemic and lymphatic system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancytopenia</td>
<td></td>
<td>31%</td>
<td>25%</td>
</tr>
<tr>
<td>Leucopenia</td>
<td></td>
<td>20%</td>
<td>7%</td>
</tr>
<tr>
<td>Body as a whole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td></td>
<td>15%</td>
<td>13%</td>
</tr>
<tr>
<td>Mucous membrane disorder</td>
<td></td>
<td>14%</td>
<td>13%</td>
</tr>
<tr>
<td>Pyrexia</td>
<td></td>
<td>11%</td>
<td>8%</td>
</tr>
<tr>
<td>Rigors</td>
<td></td>
<td>7%</td>
<td>4%</td>
</tr>
<tr>
<td>Sepsis</td>
<td></td>
<td>7%</td>
<td>2%</td>
</tr>
<tr>
<td>Anorexia</td>
<td></td>
<td>7%</td>
<td>5%</td>
</tr>
</tbody>
</table>
Clinical adverse events, which occurred in equal to or more than 5% of patients taking IV ganciclovir in a placebo controlled heart transplant study, regardless of causal relationship or seriousness, but which occurred in a higher frequency in the IV ganciclovir arm \((n = 76)\) compared to the placebo arm \((n = 73)\), are listed below.

- **Body as a whole**: headache (18%), infection (18%)
- **Metabolic and nutritional disorders**: oedema (9%)
- **Central and peripheral nervous system**: confusion (5%), peripheral neuropathy (7%)
- **Respiratory system**: pleural effusion (5%)
- **Cardiovascular system**: hypertension (20%)
- **Urogenital system**: renal impairment (14%), renal failure (12%)

Other experience with intravenous and oral ganciclovir
Other adverse events that were thought to be “probably” or “possibly” related to treatment with orally administered or intravenously administered CYMEVENE in clinical studies in either patients with AIDS or transplant recipients are listed below. These events all occurred with a frequency of less than 1%:

Body as a Whole: cellulitis, enlarged abdomen, chest pain, chills, drug level increased, malaise, abscess, back pain, oedema, face oedema, injection site abscess, injection site oedema, injection site haemorrhage, injection site phlebitis, laboratory test abnormality, photosensitivity reaction, neck pain, neck rigidity, chills and fever.

Digestive System: eructation, mouth ulceration, constipation, dysphagia, faecal incontinence, haemorrhage, hepatitis, melaena, tongue disorder, aphthous stomatitis, gastritis.

Haemic and Lymphatic System: hypochromic anaemia, pancytopenia, eosinophilia, marrow depression, splenomegaly.

Respiratory System: dyspnoea, cough increased.

Central Nervous System: somnolence, dizziness, paraesthesia, abnormal thoughts or dreams, anxiety, euphoria, insomnia, abnormal gait, ataxia, confusion, dry mouth, hypaesthesia, manic reaction, agitation, amnesia, coma, depression, hypertonia, libido decreased, nervousness, psychosis, seizures, tremor, trismus, emotional lability, hyperkinesia.

Skin and Appendages: sweating, acne, maculopapular rash, dry skin, fixed eruption, herpes simplex, skin discolouration, urticaria, vesiculobullous rash.

Special Senses: abnormal vision, taste perversion, vitreous disorder, eye pain, amblyopia, blindness, conjunctivitis, deafness, retinal detachment, glaucoma, retinitis, photophobia, tinnitus.

Metabolic and Nutritional Disorders: hypokalaemia, increases in creatinine, alkaline phosphatase, SGPT, SGOT, creatine phosphokinase and lactic dehydrogenase.

Cardiovascular System: arrhythmia, hypertension, hypotension, deep thrombophlebitis, migraine, vasodilatation.

Urogenital System: breast pain, haematuria, increased serum urea, kidney failure, decreased creatinine clearance, abnormal kidney function, urinary frequency, urinary tract infection, impotence.

Musculoskeletal System: myasthenia, myalgia, bone pain.

Laboratory Abnormalities: decreased blood sugar.

NOTE: The following adverse events reported in patients receiving ganciclovir potentially may be fatal: pancreatitis, sepsis, multiple organ failure.

In addition, the following adverse events were reported in at least one of the various clinical trials of CYMEVENE capsules for the prevention of CMV in HIV positive patients, and/or transplant patients. The incidence was usually less than 2% or within 2% incidence of that reported for the placebo arm. These include weight loss, cholestatic jaundice, neuropathy, hyperglycaemia, leg cramps, amnesia, arthritis, oesophagitis, myoclonus.

Post-Marketing Data

The Following are Post-Marketing Events Not Listed Above

Listed below are adverse events reported spontaneously since the marketing introduction of CYMEVENE sterile powder and oral capsules that had not been reported during clinical trials. These events may have occurred as part of an underlying disease process. These voluntary reports include the following:

Body as a Whole: rare dysaesthesia very rare allergic reaction, Stevens-Johnson syndrome, anaphylactic reaction, congenital anomaly, rhabdomyolysis.

Digestive System: very rare perforated intestine, intestinal ulceration.
Hepatic System: rare hepatic failure.

Haemic and Lymphatic System: very rare haemolytic anaemia.

Respiratory System: very rare bronchospasm, pulmonary fibrosis.

Central Nervous System: rare encephalopathy, hallucinations very rare dysphasia, myelopathy, extrapyramidal reaction, facial palsy, irritability.

Skin and Appendages: very rare exfoliative dermatitis.

Special Senses: very rare cataracts, loss of sense of smell, dry eyes.

Metabolic and Nutritional Disorders: rare acidosis very rare hyponatremia, elevated triglyceride levels.

Cardiovascular System: rare cardiac arrest very rare stroke, intracranial hypertension, vasculitis, peripheral ischaemia, ventricular tachycardia, cardiac conduction abnormality, Torsades de Pointes.

Urogenital System: very rare infertility, testicular hypotrophy.

Musculoskeletal System: very rare arthritis.

Laboratory Abnormalities: very rare syndrome of inappropriate antidiuretic hormone secretion.

DOSAGE AND ADMINISTRATION

Intravenous Administration

The recommended dosage, frequency or infusion rates should not be exceeded.

Caution - Do not administer by rapid or bolus intravenous injection. The toxicity of CYMEVENE may be increased as a result of excessive plasma levels.

Caution - Intramuscular or subcutaneous injection may result in severe tissue irritation due to the high pH (11) of ganciclovir solutions.

Because of individual patient variations in the clinical response of CMV disease and the sensitivity to the myelosuppressive effects of CYMEVENE, the treatment of each patient with CYMEVENE should be individualised on a case-by-case basis. Changes in dose should be based on regular clinical evaluations as well as by regular haematologic monitoring.

For Treatment of CMV Retinitis in Patients with Normal Renal Function

Induction Treatment

CYMEVENE 5 mg/kg infused at a constant rate over 1 hour every 12 hours (10 mg/kg/day) for 14 to 21 days for patients with normal renal function.

Maintenance Treatment

For immunocompromised patients at risk of relapse of CMV retinitis a course of maintenance therapy is recommended in order to delay relapse.
The recommended dose is CYMEVENE 6 mg/kg given over 1 hour, once daily, 5 days per week, or 5 mg/kg once daily 7 days per week.

For the Prevention of CMV Disease in Transplant Recipients with Normal Renal Function
The duration of treatment with CYMEVENE solution in transplant recipients is dependent upon the duration and level of immunosuppression.

Liver Transplantation
The recommended initial dosage of CYMEVENE solution is 5 mg/kg infused at a constant rate over 1 hour every 12 hours (10 mg/kg/day) for 7 to 14 days, followed by 5 mg/kg once daily 7 days a week or 6 mg/kg once daily 5 days a week for up to 100 days post-transplant.

Heart Transplantation
The recommended initial dosage of CYMEVENE solution is 5 mg/kg infused at a constant rate over 1 hour every 12 hours (10 mg/kg/day) for 14 days, followed by 6 mg/kg once daily 5 days a week for up to 100 days post-transplant.

In a controlled clinical trial in heart allograft recipients, the onset of newly diagnosed CMV disease occurred after treatment with IV CYMEVENE was stopped at day 28 post-transplant, suggesting that continued dosing may be necessary to prevent late occurrence of CMV disease in this patient population.

Bone Marrow Transplantation
The recommended initial dosage of CYMEVENE solution is 5 mg/kg infused at a constant rate over 1 hour every 12 hours (10 mg/kg/day) for 7 days, followed by 5 mg/kg once daily 7 days a week for up to 100 to 120 days post-transplant.

In controlled clinical trials in bone marrow allograft recipients, CMV disease occurred in several patients who discontinued treatment with CYMEVENE solution prematurely.

Other Transplantations
The recommended initial dosage of CYMEVENE solution is 5 mg/kg infused at a constant rate over 1 hour every 12 hours (10 mg/kg/day) for 7 to 14 days, followed by 5 mg/kg once daily 7 days a week or 6 mg/kg once daily on 5 days a week.

Renal Impairment
For patients with impaired renal function, it is recommended that the IV dose of CYMEVENE be reduced as follows:

The following recommended dosages in renal impairment are not based on experience in patients with AIDS.
Creatinine Clearance
<table>
<thead>
<tr>
<th>Creatinine Clearance (mL/min)</th>
<th>Serum Creatinine (micromol/L)</th>
<th>CYMEVENE Induction Dose (mg/kg)</th>
<th>Dosing Interval (hours)</th>
<th>CYMEVENE Maintenance Dose (mg/kg)</th>
<th>Dosing Interval (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 70</td>
<td>< 125</td>
<td>5.0</td>
<td>12</td>
<td>5.0</td>
<td>24</td>
</tr>
<tr>
<td>50 - 69</td>
<td>125 - 175</td>
<td>2.5</td>
<td>12</td>
<td>2.5</td>
<td>24</td>
</tr>
<tr>
<td>25 - 49</td>
<td>176 - 350</td>
<td>2.5</td>
<td>24</td>
<td>1.25</td>
<td>24</td>
</tr>
<tr>
<td>10 - 24</td>
<td>> 350 (and on haemodialysis)</td>
<td>1.25</td>
<td>3 times per week, following haemodialysis</td>
<td>0.625</td>
<td>3 times per week following haemodialysis</td>
</tr>
<tr>
<td>< 10</td>
<td>> 350 (and on haemodialysis)</td>
<td>1.25</td>
<td>3 times per week, following haemodialysis</td>
<td>0.625</td>
<td>3 times per week following haemodialysis</td>
</tr>
</tbody>
</table>

To calculate an estimated creatinine clearance:

\[
\text{For males} = \frac{(140 - \text{age [years]}) \times \text{(body weight [kg])}}{(72) \times (0.011 \times \text{Serum Creatinine [micromol/L])}}
\]

\[
\text{For females} = 0.85 \times \text{male value}
\]

Treatment of Disease Progression

Any patient in whom the disease progresses, either while on maintenance treatment or because treatment with CYMEVENE was withdrawn, may be re-treated using the IV induction treatment regimen. The frequency and duration of response in such patients has not been adequately established.

Indefinite treatment may be required in patients with AIDS, but even with continued maintenance treatment, patients may have progression of CMV disease.

Reduction of Dosage

Severe neutropenia (absolute neutrophil count < 0.5 x 10^9/L) or thrombocytopenia (platelets < 2.5 x 10^10/L) requires a dose interruption until some evidence of marrow recovery is observed (absolute neutrophil count > 0.75 x 10^9/L, platelets > 5 x 10^10/L).

Dose reductions should also be considered for anaemia and leucopenia.

Dose reductions are required for patients with renal impairment (see DOSAGE AND ADMINISTRATION).

Handling and Disposal

Caution should be exercised in the handling and preparation of CYMEVENE products in a manner similar to that for cytotoxic medicines since CYMEVENE is considered a potential teratogen and carcinogen in humans (see PRECAUTIONS, Carcinogenicity and Genotoxicity).

Avoid ingestion, inhalation, or direct contact with the skin and mucous membranes with either CYMEVENE solution or powder. It is advised that latex gloves and safety glasses be used to handle the preparation of CYMEVENE solution.
If ganciclovir contacts the skin or mucous membranes, wash thoroughly with soap and water for at least 15 minutes. For eye exposure rinse thoroughly with plain water. CYMEVENE IV solutions are alkaline (pH approximately 11).

Method of Preparation of Intravenous Solution

Each 10 mL clear glass vial contains the equivalent of 500 mg of the ganciclovir free base. The contents of the vial should be prepared for administration as follows (see **DOSAGE AND ADMINISTRATION, Handling and Disposal** prior to preparation):

1. The freeze-dried powder should be reconstituted by injecting 10 mL of sterile water for injection into the vial.

 Do not use bacteriostatic water for injection containing para-hydroxybenzoates, since these are incompatible with CYMEVENE sterile powder and may cause precipitation.

2. The vial should be shaken to dissolve the medicine.

3. Reconstituted solution should be inspected for particulate matter prior to proceeding with admixture preparation.

Administration of Infusion Solution

Based on patient weight the appropriate calculated dose volume should be removed from the vial (CYMEVENE concentration 50 mg/mL) and added to an acceptable infusion fluid (typically 100 mL) for delivery over the course of one hour. Infusion concentrations greater than 10 mg/mL are not recommended. **The following infusion fluids are compatible with CYMEVENE: normal saline, glucose 5% in water, Ringer's Injection, Ringer-Lactate Solution for Injection.**

CYMEVENE should not be mixed with other IV products.

CYMEVENE vials should be administered within 24 hours of reconstitution to reduce microbiological hazard. If required, it may be diluted with the infusion solutions named above and held at 2 – 8 °C for 24 hours after reconstitution (do not freeze).

CYMEVENE vials are for one dose in one patient only. Discard any remaining contents of the vial. **Compounding centres which:**

1. are licensed by the Australian Therapeutic Goods Administration to reconstitute and/or further dilute cytotoxic medicines, and
2. have validated aseptic procedures and regular monitoring of aseptic technique.

may apply a shelf-life of 15 days at 2 – 8 °C (refrigerate, do not freeze) to CYMEVENE infusions reconstituted with water and further diluted with 0.9% sodium chloride or glucose (dextrose) 5%. These further diluted solutions have been shown to be chemically stable for this period. The extended shelf-life does not apply to reconstituted injections diluted with Ringer's Injection and Ringer-Lactate Solution for Injection.

Disposal of Medicines

The release of medicines into the environment should be minimised. Medicines should not be disposed of via wastewater and disposal through household waste should be avoided. Unused or expired medicine should be returned to a pharmacy for disposal.
OVERDOSAGE

Toxic manifestations seen in animals given very high single IV doses of CYMEVENE (500 mg/kg) included emesis, hypersalivation, anorexia, bloody diarrhoea, inactivity, cytopenia, elevated liver function test results, elevated serum urea, testicular atrophy, and death. Reports of overdoses with IV ganciclovir have been received from clinical trials and during post-marketing experience. In some of these cases no adverse events were reported. The majority of patients experienced one or more of the following adverse events:

- Haematological toxicity: pancytopenia, bone marrow depression, medullary aplasia, leucopenia, neutropenia, granulocytopenia.
- Hepatotoxicity: hepatitis, liver function disorder.
- Renal toxicity: worsening of haematuria in a patient with pre-existing renal impairment, acute renal failure, elevated creatinine.
- Gastrointestinal toxicity: abdominal pain, diarrhoea, vomiting.
- Neurotoxicity: generalised tremor, convulsion.

In patients who have received an overdose of CYMEVENE, dialysis and hydration may be of benefit in reducing drug plasma levels. The use of haematopoietic growth factors should be considered.

Overdose experience with valganciclovir

One adult developed fatal bone marrow depression (medullary aplasia) after several days of dosing that was at least 10-fold greater than recommended for the patients degree of renal impairment (decreased creatinine clearance). Treatment of overdose should consist of general supportive measures. Contact the Poisons Information Centre on 13 11 26 for advice on management of overdosage.

PRESENTATION

CYMEVENE for IV infusion is available in 10 mL clear glass vials containing sterile freeze-dried ganciclovir sodium 543 mg equivalent to ganciclovir 500 mg. Each carton contains 5 vials.

PHARMACEUTICAL PRECAUTIONS

CYMEVENE freeze-dried powder for IV infusion should be stored below 30 °C.

MEDICINE CLASSIFICATION

Prescription Only Medicine.

NAME AND ADDRESS

Roche Products (New Zealand) Limited
PO Box 12492 Penrose
Auckland 1642
NEW ZEALAND

Customer enquiries: 0800 656 464

Date of Preparation: 31 May 2011